[1]
A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev. 49 (2004) 13-30.
Google Scholar
[2]
A. Luo, M. O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, J. of Mater. Sci. 29 (1994) 5259-5271.
DOI: 10.1007/bf01171534
Google Scholar
[3]
M. Bamberger, G. Dehm, Trends in the development of new Mg alloys, Annual Rev. of Mater. Res. 38 (2008) 505-533.
DOI: 10.1146/annurev.matsci.020408.133717
Google Scholar
[4]
B. L. Mordike, Development of highly creep resistant magnesium alloys, J. of Mater. Proc. Tech. 117 (2001) 391-394.
DOI: 10.1016/s0924-0136(01)00793-2
Google Scholar
[5]
B. L. Mordike, Creep-resistant magnesium alloys, Mater. Sci. and Engg: A, 324 (2002) 103-112.
Google Scholar
[6]
L. A. Bowles, H. Dieringa, C. Blawert, N. Hort, and K. U. Kainer, Investigations in the Magnesium-Tin system, Mater. Sci. Forum. 488 – 489 (2005) 135-138.
DOI: 10.4028/www.scientific.net/msf.488-489.135
Google Scholar
[7]
A. S. H. Kabir, M. Sanjari, J. Su, I-H. Jung, S. Yue, Effect of strain-induced precipitation on dynamic recrystallization in Mg–Al–Sn alloys, Mater. Sci. and Engg,: A. 616 (2014) 252-259.
DOI: 10.1016/j.msea.2014.08.032
Google Scholar
[8]
M. Zhang, W. Z. Zhang, G. Z. Zhu, The morphology and crystallography of polygonal Mg2Sn precipitates in a Mg–Sn–Mn–Si alloy, Scr. Mater. 59 (2008) 866-869.
DOI: 10.1016/j.scriptamat.2008.06.033
Google Scholar
[9]
F. R. Elsayed, T. T. Sasaki, C. L. Mendis, T. Ohkubo, K. Hono, Significant enhancement of the age-hardening response in Mg–10Sn–3Al–1Zn alloy by Na microalloying, Scr. Mater. 68 (2013) 797-800.
DOI: 10.1016/j.scriptamat.2013.01.032
Google Scholar
[10]
F. R. Elsayed, T. T. Sasaki, C. L. Mendis, T. Ohkubo, K. Hono, Compositional optimization of Mg–Sn–Al alloys for higher age hardening response, Mater. Sci. and Engg.: A. 566 (2013) 22-29.
DOI: 10.1016/j.msea.2012.12.041
Google Scholar
[11]
C. L. Mendis, C. J. Bettles, M. A. Gibson, C. R. Hutchinson, An enhanced age hardening response in Mg-Sn based alloys containing Zn, Mater. Sci. and Engg.: A, 435-436 (2006) 163-171.
DOI: 10.1016/j.msea.2006.07.090
Google Scholar
[12]
T. T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono, Effect of double aging and microalloying on the age hardening behavior of a Mg–Sn–Zn alloy, Mater. Sci. and Engg.: A, 530 (2011) 1-8.
DOI: 10.1016/j.msea.2010.05.010
Google Scholar
[13]
X. Huang, W. Zhang, Y. Ma, M. Yin, Enhancement of hardening and thermal resistance of Mg–Sn-based alloys by addition of Cu and Al, Phil. Mag. Lett. 94 (2014) 460-469.
DOI: 10.1080/09500839.2014.926034
Google Scholar
[14]
C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, M. R. Ben, et al. FactSage thermochemical software and databases, Calphad. 26 (2002) 189-228.
DOI: 10.1016/s0364-5916(02)00035-4
Google Scholar
[15]
C. L. Mendis, C. J. Bettles, M. A. Gibson, S. Gorsse, C. R. Hutchinson, Refinement of precipitate distributions in an age-hardenable Mg–Sn alloy through microalloying, Phil. Mag. Lett. 86 (2006) 443-456.
DOI: 10.1080/09500830600871186
Google Scholar
[16]
J. F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48 (2003) 1009-1015.
DOI: 10.1016/s1359-6462(02)00497-9
Google Scholar