Age-Hardening Response of Mg-Al-Sn Alloys

Article Preview

Abstract:

Precipitation hardening has been used before as one of the most effective strengthening methods for many metallic alloys. However, this method has not been studied completely in magnesium alloys, and the numbers of precipitation hardenable wrought Mg alloys are still very limited compared to aluminum alloys and steels. The age hardening responses of Mg-Al-Sn alloys in cast-homogenized condition were investigated by isothermal aging at 200°C for prolonged time. It was found that hardness can be improved significantly for the alloy with higher amounts of tin. The improvement in hardness was reasoned by the formation of precipitates. The shapes and morphology of the precipitates were different depending on the orientations of the grains. The precipitates were characterized by scanning electron microscope.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 828-829)

Pages:

250-255

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Luo, Recent magnesium alloy development for elevated temperature applications, Int. Mater. Rev. 49 (2004) 13-30.

Google Scholar

[2] A. Luo, M. O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications, J. of Mater. Sci. 29 (1994) 5259-5271.

DOI: 10.1007/bf01171534

Google Scholar

[3] M. Bamberger, G. Dehm, Trends in the development of new Mg alloys, Annual Rev. of Mater. Res. 38 (2008) 505-533.

DOI: 10.1146/annurev.matsci.020408.133717

Google Scholar

[4] B. L. Mordike, Development of highly creep resistant magnesium alloys, J. of Mater. Proc. Tech. 117 (2001) 391-394.

DOI: 10.1016/s0924-0136(01)00793-2

Google Scholar

[5] B. L. Mordike, Creep-resistant magnesium alloys, Mater. Sci. and Engg: A, 324 (2002) 103-112.

Google Scholar

[6] L. A. Bowles, H. Dieringa, C. Blawert, N. Hort, and K. U. Kainer, Investigations in the Magnesium-Tin system, Mater. Sci. Forum. 488 – 489 (2005) 135-138.

DOI: 10.4028/www.scientific.net/msf.488-489.135

Google Scholar

[7] A. S. H. Kabir, M. Sanjari, J. Su, I-H. Jung, S. Yue, Effect of strain-induced precipitation on dynamic recrystallization in Mg–Al–Sn alloys, Mater. Sci. and Engg,: A. 616 (2014) 252-259.

DOI: 10.1016/j.msea.2014.08.032

Google Scholar

[8] M. Zhang, W. Z. Zhang, G. Z. Zhu, The morphology and crystallography of polygonal Mg2Sn precipitates in a Mg–Sn–Mn–Si alloy, Scr. Mater. 59 (2008) 866-869.

DOI: 10.1016/j.scriptamat.2008.06.033

Google Scholar

[9] F. R. Elsayed, T. T. Sasaki, C. L. Mendis, T. Ohkubo, K. Hono, Significant enhancement of the age-hardening response in Mg–10Sn–3Al–1Zn alloy by Na microalloying, Scr. Mater. 68 (2013) 797-800.

DOI: 10.1016/j.scriptamat.2013.01.032

Google Scholar

[10] F. R. Elsayed, T. T. Sasaki, C. L. Mendis, T. Ohkubo, K. Hono, Compositional optimization of Mg–Sn–Al alloys for higher age hardening response, Mater. Sci. and Engg.: A. 566 (2013) 22-29.

DOI: 10.1016/j.msea.2012.12.041

Google Scholar

[11] C. L. Mendis, C. J. Bettles, M. A. Gibson, C. R. Hutchinson, An enhanced age hardening response in Mg-Sn based alloys containing Zn, Mater. Sci. and Engg.: A, 435-436 (2006) 163-171.

DOI: 10.1016/j.msea.2006.07.090

Google Scholar

[12] T. T. Sasaki, K. Oh-ishi, T. Ohkubo, K. Hono, Effect of double aging and microalloying on the age hardening behavior of a Mg–Sn–Zn alloy, Mater. Sci. and Engg.: A, 530 (2011) 1-8.

DOI: 10.1016/j.msea.2010.05.010

Google Scholar

[13] X. Huang, W. Zhang, Y. Ma, M. Yin, Enhancement of hardening and thermal resistance of Mg–Sn-based alloys by addition of Cu and Al, Phil. Mag. Lett. 94 (2014) 460-469.

DOI: 10.1080/09500839.2014.926034

Google Scholar

[14] C. W. Bale, P. Chartrand, S. A. Degterov, G. Eriksson, K. Hack, M. R. Ben, et al. FactSage thermochemical software and databases, Calphad. 26 (2002) 189-228.

DOI: 10.1016/s0364-5916(02)00035-4

Google Scholar

[15] C. L. Mendis, C. J. Bettles, M. A. Gibson, S. Gorsse, C. R. Hutchinson, Refinement of precipitate distributions in an age-hardenable Mg–Sn alloy through microalloying, Phil. Mag. Lett. 86 (2006) 443-456.

DOI: 10.1080/09500830600871186

Google Scholar

[16] J. F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 48 (2003) 1009-1015.

DOI: 10.1016/s1359-6462(02)00497-9

Google Scholar