Effect of Ultrasonic Treatment on Microstructure and Mechanical Property of In Situ Al/2TiB Particulate Composites

Article Preview

Abstract:

Al/2TiB2 in-situ composite was fabricated using salt-melt reaction method. Subsequently, it was re-melted and treated with high intensity ultrasonic waves for various time intervals. Substantial reduction in TiB2 particle size down to ~ 300 nm along with significant improvement in dispersion is achieved with the aid of ultrasonic treatment. Ultrasonic treatment has resulted significant increase in hardness of Al/2TiB2 in-situ composite.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 830-831)

Pages:

463-466

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.L. Pramod, S. R. Bakshi, and B.S. Murty, Aluminum-Based Cast In Situ Composites: A Review, J. Mater. Eng. Perform., DOI: 10. 1007/s11665-015-1424-2.

Google Scholar

[2] M. Chakraborty, A. Mandal, G.S. Vinod Kumar, K.R. Ravi, I.G. Siddhalingeshwar, R. Mitra, B.S. Murty, Recent Developments in Aluminum Alloy Reinforced Titanium di-boride in-situ Composites, Indian Foundry Journal, 58(11), (2012), 29-34.

Google Scholar

[3] S. Lakshmi, L. Lu, M. Gupta, In situ preparation of TiB2 reinforced Al based composites, J. Mater. Process. Technol. 73 (1998) 160–166.

DOI: 10.1016/s0924-0136(97)00225-2

Google Scholar

[4] A. Mandal, R. Maiti, M. Chakraborty, B.S. Murty, Effect of TiB2 particles on aging response of Al–4Cu alloy, Mater. Sci. Eng. A, 386 (2004) 296–300.

DOI: 10.1016/s0921-5093(04)00938-4

Google Scholar

[5] Y.M. Youssef, R.J. Dashwood, P.D. Lee, Effect of clustering on particle pushing and solidification behavior in TiB2 reinforced aluminium PMMCs, Composites: Part A 36 (2005) 747–763.

DOI: 10.1016/j.compositesa.2004.10.027

Google Scholar

[6] Z. Liu, Q. Han, J. Li, W. Huang, Effect of ultrasonic vibration on microstructural evolution of the reinforcements and degassing of in situ TiB2p/Al–12Si–4Cu composites, J. Mater. Process. Technol. 212 (2012) 365– 371.

DOI: 10.1016/j.jmatprotec.2011.09.021

Google Scholar

[7] H.K. Feng, S.R. Yu, Y.L. Li, L.Y. Gong, Effect of ultrasonic treatment on microstructuresof hypereutectic Al–Si alloy, J. Mater. Process. Technol. 2 0 8 ( 2 0 0 8 ) 330–335.

Google Scholar

[8] S. Mula, P. Padhi, S.C. Panigrahi, S.K. Pabi, S. Ghosh, On structure and mechanical properties of ultrasonically cast Al–2% Al2O3 nanocomposite, Mater. Res. Bull. 44 (2009) 1154–1160.

DOI: 10.1016/j.materresbull.2008.09.040

Google Scholar

[9] Z. Liu,M. Rakita, W. Xu, X. Wang, Q. Han, Ultrasound assisted salts–metal reaction for synthesizing TiB2 particles at low temperature, Chem. Engg Journal. 263 (2015) 317–324.

DOI: 10.1016/j.cej.2014.11.043

Google Scholar

[10] M. Estruga, L. Chen,H. Choi, X. Li, S Jin, Ultrasonic-Assisted Synthesis of Surface-Clean TiB2Nanoparticlesand Their Improved Dispersion and Capture in Al-Matrix Nanocomposites, Appl. Mater. Interfaces 5, (2013), 8813−8819.

DOI: 10.1021/am402719p

Google Scholar

[11] A. Das, H.R. Kotadia, Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al–Si alloy, Materials Chemistry and Physics 125 (2011) 853–859.

DOI: 10.1016/j.matchemphys.2010.09.035

Google Scholar

[12] Georgy I. Eskin and Dmitry G. Eskin, Ultrasonic Treatment of Light Alloy Melts, Second Edition, CRC Press, Taylor & Francis Group (2015).

Google Scholar

[13] J. H. Bang , K. S. Suslick, Applications of Ultrasound to the Synthesis of Nanostructured Materials Adv. Mater., 22 (2010) 1039.

DOI: 10.1002/adma.200904093

Google Scholar

[14] S. Zhang, Y. Zhao, X Cheng,G. Chen, Q. Dai, High-energy ultrasonic field effects on the microstructureand mechanical behaviors of A356 alloy,J. Alloys Compd. 470 (2009) 168–172.

DOI: 10.1016/j.jallcom.2008.02.091

Google Scholar