Non Aqueous Synthesis of Titania Ink for Printed Electronics

Article Preview

Abstract:

A non-aqueous synthesis technique of room temperature curable titania ink, screen printed on flexible BoPET film for printed electronics applications is reported. The phase evolution of rutile titania powder, formulation of a fast curing titania ink, as well as the microstructure and dielectric properties of printed pattern are discussed. In terms of ease of synthesis, cost effectiveness and faster curing time, the developed ink is found to be advantageous over water based dielectric inks.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 830-831)

Pages:

573-576

Citation:

Online since:

September 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Noh, M. Jung, G. Lee, S. Lin, D. Kim, S. Kim, J.M. Tour and G. Cho, Integrable single walled carbon (SWNT) network based thin film transistors using roll-to-roll gravure and inkjet, Org. Electron. 12 (2011) 2185 - 2191.

DOI: 10.1016/j.orgel.2011.09.006

Google Scholar

[2] T. Sekitani, H. Nakajima, H. Maeda, T. Fakushima, T. Aida, K. Hata, and T. Someya, Stretchable active- matrix organic light emitting diode display using printable elastic conductor, Nature Mater. 8 (2009) 494 – 499.

DOI: 10.1038/nmat2459

Google Scholar

[3] S. Venugopal and P. A. Ronald, Microcontact printing of uniform nanoparticle arrays, Nano Lett. 4 (2004) 4 - 44.

Google Scholar

[4] L. J. Guo, Nanoprint lithography: Methods and material requirements, Adv. Mater. 19 (2007) 495 – 513.

Google Scholar

[5] J. A. Jacob, B. D. Eric, F. M. Thomas, J. M. Michael, Y. A. Bok, G. N. Ralph, T. B. Jennifer, and J. A. Lewis, Conformal printing of electrically small antennas on three dimensional surfaces, Adv. Mater. 23 (2011) 1335-1340.

DOI: 10.1002/adma.201003734

Google Scholar

[6] R. D. Shannon and J. A. Pask, Kinetics of the anatase – rutile transformation, J. Am. Ceram. Soc. 48 (1965) 391-98.

Google Scholar

[7] A. Templeton, X. Wang, S. J. Pen, S J. Webb, L. F. Cohen and N. M. Alford, Microwave dielectric loss of titanium oxide, J. Am. Ceram. Soc. 83 (2000) 95-100.

DOI: 10.1111/j.1151-2916.2000.tb01154.x

Google Scholar