Materials Science Forum
Vols. 838-839
Vols. 838-839
Materials Science Forum
Vols. 836-837
Vols. 836-837
Materials Science Forum
Vol. 835
Vol. 835
Materials Science Forum
Vol. 834
Vol. 834
Materials Science Forum
Vol. 833
Vol. 833
Materials Science Forum
Vol. 832
Vol. 832
Materials Science Forum
Vols. 830-831
Vols. 830-831
Materials Science Forum
Vols. 828-829
Vols. 828-829
Materials Science Forum
Vol. 827
Vol. 827
Materials Science Forum
Vols. 825-826
Vols. 825-826
Materials Science Forum
Vol. 824
Vol. 824
Materials Science Forum
Vols. 821-823
Vols. 821-823
Materials Science Forum
Vol. 820
Vol. 820
Materials Science Forum Vols. 830-831
Paper Title Page
Abstract: Design of Turbo machinery is complex and efficiency is directly related to material performance, material selection is of prime importance. Temperature limitations are the most crucial limiting factors to gas turbine efficiencies. This paper presents the life of GTD 111 applied to gas turbine blade based on LCF and TMF test results. The LCF tests were conducted under various strain ranges based on gas turbine operating conditions. In addition, IP (in-phase) and OP (out of-phase) TMF tests were conducted under various strain ranges. The paper will focus light on above issues and each plays an important role within the Gas Turbine Material literature and ultimately influences on planning and development practices. It is expected that this comprehensive contribution will be very beneficial to everyone involved or interested in Gas Turbines.
211
Abstract: Lead-free solders are environment friendly and are in great demand for microelectronic applications. In the present study, Sn-9Zn lead free solder alloy was solidified on Cu substrate for different reflow times from 10 to 1000s. The influence of reflow time on wetting, formation of intermetallic compounds (IMCs) and bond shear strength was studied using dynamic contact angle analyzer, bond tester and scanning electron microscopy. The results indicate that, the wettability of the solder alloy increased with increase in reflow time. Microstructure study revealed the presence of Cu5Zn8 and CuZn5 IMCs at the interface. The thickness of an IMC increased with increase in the reflow time. The mean thickness of about 11μm for Cu5Zn8 IMC layer was observed for the reflow time of 1000s. The thickness of CuZn5 layer increased up to a reflow time of 100s and decreases thereafter. The bond shear strength increased up to 100s and decreased with increase in reflow time. The decrement in shear strength at higher reflow time is mainly due to excessive thickness of Cu5Zn8 IMC layer and diffusion of Sn from bulk solder towards the substrate. The excessive thick IMC layer exhibited pre micro-cracks led to the brittle failure of bond under the influence of shear stress.
215
Abstract: Thrust chamber of rocket engines often operate under conditions of rapid heating environments with temperatures approaching the melting points of the materials involved. Therefore, for the optimum design of rocket engines, it is necessary to obtain the properties of thrust chamber materials under actual operating conditions. The heating rates and loading rates in conventional (laboratory) tensile stress-strain tests, which are intended to evaluate the high temperature tensile properties of the materials, are usually very low compared to that actually encountered in rocket engines. The heating rates in conventional stress-strain tests are of the order of 0.4K per second to 0.5K per second only, whereas the combustion and aerodynamic heating rates in rockets and re-entry vehicles will usually exceed 100K per second. In this context, a very important beginning has been made to experimentally determine the high temperature tensile properties of KC20WN (a cobalt based superalloy) used in earth storable liquid rocket engine thrust chamber under conditions of rapid rates of heating which actually exists during flight. These investigations have shown that the elevated temperature strength of KC20WN depends upon the heating rate (or heating time) and can be considerably higher for rapid-heating conditions than for conventional heating conditions.
219
Abstract: This paper investigates the impact of strain sensitivity on the linear model mock-up bearing (LMMB) using digital image correlation (DIC) technique. This work addresses the lack of norms, standards, reference of elastic/plastic deformation of bearings elements. Towards that, experimental set-up was designed and fabricated with a set of LMMB (AISI4140) with commercially purchased steel balls (AISI52100) to study the raceway relative approach and localized strain rate on steel ball, wherein raceway relative approach is measured using LVDT & screw gauge and results are compared with DIC results. These data are very much useful in design and development of large diameter slewing bearing for fast breeder reactor and also these results can be used to optimize the number of ball, load, and tolerance on bearing.
223
Abstract: Ratcheting is the progressive directional accumulation of deformation due to asymmetric loading in structures. Coffin-Manson plots derived from ratcheting experiments conducted at temperatures over the range, 823-923 K showed anomalous behavior at 873 K and 923 K in the form of dual slope and positive slope respectively, which was attributed to a change in the deformation mechanism during ratcheting in the above temperature domain. This was also reflected in the transition in the fracture mode from fatigue to creep at 873 and 923 K.
227
Abstract: The effect of microalloying elements in Ti-Nb-V containing high strength low alloy (HSLA) steel has been investigated in the present study. The addition of low alloying elements (such as Ti, Nb and V) and distinct heating treatment processes has been used to improve the mechanical properties of HSLA steel. The effect on the microstructure and mechanical properties of normalizing treatment (at 950°C) of as forged steel has been investigated. The microstructural characterization of microalloyed HSLA steel is carried out by using different techniques such as optical microscopy, scanning electron microscopy (SEM) etc. The hardness, tensile testing and Charpy V notch impact tests are performed to study the mechanical behaviour of the alloy. It has been concluded that the precipitation strengthening mechanism for the improvement of impact toughness due to secondary precipitates such as TiN, Ti(C, N), VN etc.
231
Abstract: Aluminium foams are of interest due to their ultra low density, high structural stiffness per unit weight. Like conventional Al foams having Ca, ceramic particle (e.g. SiC, Al2O3) containing Al alloy metal matrix composite (MMC) foams can be produced. In this approach, parameters such as particle type, size, and volume fraction need to be optimized to get good quality foams with high foam expansions. However, the role of them on the compression properties of MMC foams is seldom reported. With this objective, the present study explores the effect of SiCP size and vol. % on compression behavior of various Al-Si/SiCP foams prepared at DMRL. From the large number of compression tests, it is observed that the reinforcement parameters don’t seem to play any effective role with respect to foam properties, although they are very important in foam manufacture.
234
Abstract: The forming limit diagram (ε-FLD) was estimated by deforming IN-718 sheet metal in different strain paths using a sub-size limiting dome height test set-up. The bending strains induced due to the use of smaller punch were estimated in all the strain paths, and the corrected ε-FLD was evaluated. The mathematical models such as Hill localized necking, Swift diffuse necking and Storen-Rice bifurcation theories were implemented to predict the limiting strains. In-order to avoid the path dependency of the ε-FLD during multi-stage forming process, stress based forming limit diagram (σ-FLD) was estimated using von-Mises and Hill-48 anisotropy plasticity theory with incorporation of Hollomon power hardening law. It was found that the bending strain influenced the limiting strains and stresses in the forming limit diagram. However, IN-718 material has encouraging formability in stretch forming process. The plot of the equivalent strains versus triaxiality indicated increasing limiting strain of the material in tension-tension mode.
238
Abstract: High performance rockets are developed using cryogenic technology. High thrust cryogenic rocket engines operating at elevated temperatures and pressures are the backbone of such rockets. The thrust chamber of such engines, which produce the thrust for the propulsion of the rocket, can be considered as structural elements. Often double walled construction is employed for these chambers for better cooling and enhanced performance. The thrust chamber investigated here has its hot inner wall fabricated out of a high conductivity high ductility copper alloy and outer wall made of a ductile stainless steel. The engine is indigenously designed and developed by ISRO and is undergoing hot tests. Inner wall is subjected to high thermal and pressure loads during operation of engine due to which it will be in the plastic regime. Evaluation of tensile properties of the copper alloy and stainless steel up to fracture, at cryogenic, ambient and elevated temperatures in parent metal and welded forms is of paramount importance for its constitutive modelling and thermo structural analysis of the thrust chamber.
242
Abstract: The penetration characteristics of EBW are primarily dependent on the main beam current (Iw), potential difference between the cathode and anode (voltage, V) and the welding speed (S). There are other influencing parameters like weld focus current (If), welding gun to work distance (GW) and beam oscillation.In the present study, the effect of work distance on focus current and on penetration of Ti6Al4V weld is studied using a 60kV, 30kW EB welding machine. Weld focus current is measured over a range of work distance and variation in its pattern is studied. Similarly, the variation of depth of penetration by varying the work distance and varying the focus current at a particular work distance constant are also analyzed.It is observed that, focus current is inversely proportional to the work distance and the variation in focus current per unit change of work distance is high in the shorter work distance region. The change in focus current and work distance affects the weld penetration and fusion zone geometry. For optimum penetration at a given work distance, the beam focus should be below the surface in keyhole welding. As the work distance increases, the penetration capacity of the beam decreases and maximum penetration is obtained in lesser work distance region.
249