Reconstruction Method for Phase-Shifting Electron Holography Fitted with Fresnel Diffraction Affected Fringes

Article Preview

Abstract:

Phase shifting electron holography is a transmission electron microscope technique that a number of holograms with different initial phases are acquired by changing the angle of the incident electron beam, and the intensity variation at a certain point on the holograms is fitted by sinusoidal curve to retrieve the object wave passing through a specimen. In reality, however, Fresnel fringes caused by the electrostatic biprism modulates the electron wave, limits the fitting accuracy and results in phase errors in phase reconstruction. In this study, we suggest a modified phase reconstruction method for phase shifting electron holography. The intensity variations at a certain point on each hologram are fitted not by sinusoidal curve, but by Fresnel diffraction affected curve to retrieve the object wave. This would provide better fitting accuracy, and has a potential to improve the precision of phase shifting electron holography. Simulations demonstrated the improvements of this method comparing with conventional phase shifting holography method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-221

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Gabor: Proc. R. Soc. London. A197 (1949) 454.

Google Scholar

[2] A. Tonomura, T. Matsuda, J. Endo, H. Todokoro and T. Komoda: J Electron Microsc. 28 (1979)1.

Google Scholar

[3] A. Tonomura: Jpn. J. Appl. Phys. 47(2008)11.

Google Scholar

[4] H. Lichte: Ultramicroscopy. 51(1993)15.

Google Scholar

[5] T. Fujita, K. Yamamoto, M. R. McCartney and D. J. Smith: Ultramicroscopy. 106 (2006)486.

Google Scholar

[6] D. Lei, K. Mitsuishi, K. Harada, M. Shimojo, D. Ju and M. Takeguchi: Microscopy. 62 (2013)563-570.

DOI: 10.1093/jmicro/dft032

Google Scholar

[7] D. Lei, K. Mitsuishi, K. Harada, M. Shimojo, D. Ju and M. Takeguchi: Jpn. J. Appl. Phys. 53, 02BC23 (2014).

DOI: 10.7567/jjap.53.02bc23

Google Scholar

[8] Q. Ru, J. Endo, T. Tanji and A. Tonomura: Appl Phys Lett. 59 (1991)2372.

Google Scholar

[9] Q. Ru, G. Lai, K. Aoyama, J. Endo and A. Tonomura: Ultramicroscopy. 55(1994) 209.

Google Scholar

[10] K. Yamamoto, T. Hirayama and T. Tanji: Ultramicroscopy. 101(2004)265.

Google Scholar

[11] K. Yamamoto, Y. Sugawara, M. R. McCartney and D. J. Smith: J. Electron Microsc. 59(2010) s81.

Google Scholar

[12] Harada K, Tonomura A, Matsuda T, Akashi T and Togawa Y: J Appl Phys. 96(2004) 6097.

Google Scholar