Fabrication of a New Al-Ti-C Master Alloy and its Refining Effect on AZ31

Article Preview

Abstract:

The Al-Ti-C master alloy with excessive carbon content was prepared by the self-propagating high-temperature synthesis (SHS) in melt method. The master alloy mainly contains Al4C3 and TiC phases, which exhibits satisfactory refining effect on AZ31 alloy. With 1.5wt.% addition of the master alloy, the grain size reduced from 280 μm to 109 μm. The tensile properties are also improved with the refinement of grain structure. The ultimate tensile strength increased from 105 MPa to 156 MPa while the elongation increased from 8.4% to 13.6%. The Al4C3 particles and TiC particles play important role in the refining process due to their low disregistry with α-Mg grains.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-32

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Birol, Grain refining efficiency of Al-Ti-C alloys, J. Alloy Compd. Vol. 422 (2006) 128-131.

DOI: 10.1016/j.jallcom.2005.11.059

Google Scholar

[2] G. Han, X. Liu, H. Ding, Grain refinement of AZ31 magnesium alloy by new Al-Ti-C master alloys, T. Nonferr. Metal. Soc. Vol. 19 (2009) 1057-1064.

DOI: 10.1016/s1003-6326(08)60406-9

Google Scholar

[3] H. Y. Wang, F. Zhao, Q. C. Jiang, Y. Wang, B. X. Ma, Effect of Mg addition on the self-propagating high temperature synthesis reaction in Al-Ti-C system, J. Mater. Sci. Vol. 40 (2005) 1255-1257.

DOI: 10.1007/s10853-005-6946-9

Google Scholar

[4] A.K. Chaubey, B.K. Mishra, N.K. Mukhopadhyay, P.S. Mukherjee, Effect of compact density and preheating temperature of the Al-Ti-C preform on the fabrication of in situ Mg-TiC composites, J. Mater. Sci. Vol. 45 (2010), 1507-1013.

DOI: 10.1007/s10853-009-4114-3

Google Scholar

[5] H.Y. Wang, Q.C. Jiang, X.L. Li, F. Zhao, Effect of Al content on the self-propagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium, J. Alloy Compd. Vol. 366 (2004) 9-12.

DOI: 10.1016/s0925-8388(03)00737-0

Google Scholar

[6] H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, In situ synthesis of TiC/Mg composites in molten magnesium, Scripta Mater. Vol. 48 (2003) 1349-1354.

DOI: 10.1016/s1359-6462(03)00014-9

Google Scholar

[7] W. C. Lee, S. L. Chung, Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system, J. Am. Ceram. Soc. Vol. 80 (1) (1997) 53-61.

DOI: 10.1111/j.1151-2916.1997.tb02790.x

Google Scholar

[8] Z. W. Liu, M. Rakita, Q. Han, J. G. Li, A Developed Method for Fabricating In-Situ TiC p /Mg Composites by Using Quick Preheating Treatment and Ultrasonic Vibration, Metall. Mater. Trans. A Vol. 43A (2012) 2116-2124.

DOI: 10.1007/s11661-011-1041-0

Google Scholar

[9] Z. Q. Wang, X. F. Liu, J. Y. Zhang, X. F. Bian, Study of the reaction mechanism in the Al-C binary system through DSC and XRD, J. Mater. Sci. Vol. 39 (2004) 2179-2181.

DOI: 10.1023/b:jmsc.0000017782.61749.36

Google Scholar

[10] Y. Zhou, Z. Q. Li, Structural characterization of a mechanical alloyed Al–C mixture, J. Alloy Compd. Vol. 414 (2006) 107-112.

Google Scholar

[11] R. Mahmudi, Grain boundary strengthening in a fine grained aluminium alloy, Scripta Mater. Vol. 32 (1995) 781-786.

DOI: 10.1016/0956-716x(95)91603-m

Google Scholar

[12] S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen, Hall-Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel, Metall. Mater. Trans. A Vol. 38A (2007) 1202-1210.

DOI: 10.1007/s11661-007-9143-4

Google Scholar

[13] L. Lu, A. K. Dahle, D. H. Stjohn, Heterogeneous nucleation of Mg–Al alloys, Scripta Mater. Vol. 54(12) (2006) 2197-2201.

DOI: 10.1016/j.scriptamat.2006.02.048

Google Scholar

[14] B. S. Murty, S. A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, Int. Mater. Rev. Vol. 47(1) (2002) 3-29.

DOI: 10.1179/095066001225001049

Google Scholar

[15] L. Lu, A. K. Dahle, D. H. Stjohn, Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys, Scripta Mater. Vol. 53(5) (2005) 517-522.

DOI: 10.1016/j.scriptamat.2005.05.008

Google Scholar

[16] C. H. Xu, Taiyuan: Tiyuan University of Technology, (2010) 34-45.

Google Scholar