[1]
Y. Birol, Grain refining efficiency of Al-Ti-C alloys, J. Alloy Compd. Vol. 422 (2006) 128-131.
DOI: 10.1016/j.jallcom.2005.11.059
Google Scholar
[2]
G. Han, X. Liu, H. Ding, Grain refinement of AZ31 magnesium alloy by new Al-Ti-C master alloys, T. Nonferr. Metal. Soc. Vol. 19 (2009) 1057-1064.
DOI: 10.1016/s1003-6326(08)60406-9
Google Scholar
[3]
H. Y. Wang, F. Zhao, Q. C. Jiang, Y. Wang, B. X. Ma, Effect of Mg addition on the self-propagating high temperature synthesis reaction in Al-Ti-C system, J. Mater. Sci. Vol. 40 (2005) 1255-1257.
DOI: 10.1007/s10853-005-6946-9
Google Scholar
[4]
A.K. Chaubey, B.K. Mishra, N.K. Mukhopadhyay, P.S. Mukherjee, Effect of compact density and preheating temperature of the Al-Ti-C preform on the fabrication of in situ Mg-TiC composites, J. Mater. Sci. Vol. 45 (2010), 1507-1013.
DOI: 10.1007/s10853-009-4114-3
Google Scholar
[5]
H.Y. Wang, Q.C. Jiang, X.L. Li, F. Zhao, Effect of Al content on the self-propagating high-temperature synthesis reaction of Al-Ti-C system in molten magnesium, J. Alloy Compd. Vol. 366 (2004) 9-12.
DOI: 10.1016/s0925-8388(03)00737-0
Google Scholar
[6]
H.Y. Wang, Q.C. Jiang, X.L. Li, J.G. Wang, In situ synthesis of TiC/Mg composites in molten magnesium, Scripta Mater. Vol. 48 (2003) 1349-1354.
DOI: 10.1016/s1359-6462(03)00014-9
Google Scholar
[7]
W. C. Lee, S. L. Chung, Ignition phenomena and reaction mechanisms of the self-propagating high-temperature synthesis reaction in the titanium-carbon-aluminum system, J. Am. Ceram. Soc. Vol. 80 (1) (1997) 53-61.
DOI: 10.1111/j.1151-2916.1997.tb02790.x
Google Scholar
[8]
Z. W. Liu, M. Rakita, Q. Han, J. G. Li, A Developed Method for Fabricating In-Situ TiC p /Mg Composites by Using Quick Preheating Treatment and Ultrasonic Vibration, Metall. Mater. Trans. A Vol. 43A (2012) 2116-2124.
DOI: 10.1007/s11661-011-1041-0
Google Scholar
[9]
Z. Q. Wang, X. F. Liu, J. Y. Zhang, X. F. Bian, Study of the reaction mechanism in the Al-C binary system through DSC and XRD, J. Mater. Sci. Vol. 39 (2004) 2179-2181.
DOI: 10.1023/b:jmsc.0000017782.61749.36
Google Scholar
[10]
Y. Zhou, Z. Q. Li, Structural characterization of a mechanical alloyed Al–C mixture, J. Alloy Compd. Vol. 414 (2006) 107-112.
Google Scholar
[11]
R. Mahmudi, Grain boundary strengthening in a fine grained aluminium alloy, Scripta Mater. Vol. 32 (1995) 781-786.
DOI: 10.1016/0956-716x(95)91603-m
Google Scholar
[12]
S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen, Hall-Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel, Metall. Mater. Trans. A Vol. 38A (2007) 1202-1210.
DOI: 10.1007/s11661-007-9143-4
Google Scholar
[13]
L. Lu, A. K. Dahle, D. H. Stjohn, Heterogeneous nucleation of Mg–Al alloys, Scripta Mater. Vol. 54(12) (2006) 2197-2201.
DOI: 10.1016/j.scriptamat.2006.02.048
Google Scholar
[14]
B. S. Murty, S. A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, Int. Mater. Rev. Vol. 47(1) (2002) 3-29.
DOI: 10.1179/095066001225001049
Google Scholar
[15]
L. Lu, A. K. Dahle, D. H. Stjohn, Grain refinement efficiency and mechanism of aluminium carbide in Mg-Al alloys, Scripta Mater. Vol. 53(5) (2005) 517-522.
DOI: 10.1016/j.scriptamat.2005.05.008
Google Scholar
[16]
C. H. Xu, Taiyuan: Tiyuan University of Technology, (2010) 34-45.
Google Scholar