[1]
V.I. Tretyakov, Metal-ceramic cemented carbides, Metallurgizdat, Moscow, 1962 (in Russian).
Google Scholar
[2]
V.I. Tretyakov, Bases of materials science and technology of fabrication of sintered cemented carbides, Metallurgiya, Moscow, 1975 (in Rusian).
Google Scholar
[3]
U. Fischer, E. Hartzell, J. Akerman, US patent 4, 743, 515 (1988).
Google Scholar
[4]
B. Aronsson, T. Hartzell, J. Aakerman, Structure and properties of dual carbide for rock drilling. In Proceedings of Adv. Hard Mater. Prod. Conf., 1988, Shrewsbury, UK: MPR Publ. Serv. Ltd., p.19/1 – 19/6.
Google Scholar
[5]
H. Suzuki, K. Hayashi, Y. Taniguchi, The beta-free layer near the surface of vacuum-sintered tungsten carbide-beta-Co alloys containing nitrogen, Trans. Jpn. Inst. Met.; 22(11)(1981)758-764.
DOI: 10.2320/matertrans1960.22.758
Google Scholar
[6]
M. Schwarzkopf, H.E. Exner, H.F. Fischmeister, W. Schintlmeister, Kinetics of compositional modification of (W, Ti)C-WC-Co alloy surfaces. Mater. Sci. Eng. A; A105/106(1988)225-231.
DOI: 10.1016/0025-5416(88)90500-9
Google Scholar
[7]
K. Tsuda, A. Ikegaya, K. Isobe, M. Kitagawa, T. Nomura, Development of functionally graded sintered hard materials. Powder Met., 39(4)(1996)296-300.
DOI: 10.1179/pom.1996.39.4.296
Google Scholar
[8]
W. Lengauer, K. Dreyer, Functionally graded hardmetals, J. Alloys Compd., 338(1-2) (2002)194-212.
DOI: 10.1016/s0925-8388(02)00232-3
Google Scholar
[9]
W. Lengauer, K. Dreyer, Tailoring hardness and toughness gradients in functional gradient hardmetals (FGHMs), Int. J. Refractory Met. Hard Mater., 24(2006)155-161.
DOI: 10.1016/j.ijrmhm.2005.03.008
Google Scholar
[10]
C. Colin, L. Durant, et al., Processing of functional-gradient WC-Co cermets by powder metallurgy, Int. J. Refractory Met. Hard Mater., 12(1993-1994)145-152.
DOI: 10.1016/0263-4368(93)90064-m
Google Scholar
[11]
S. Rassbach, S. Moseley, W. Böhlke, Metallurgical fundamentals of macroscopic gradient hardmetals. In Proc. 17th Int. Plansee Seminar, L. Sigl, P. Rödhammer, H. Wildner (Eds. ), V. 2, Reutte, 2009, Austria: Plansee Group, 2009, p.48/1 – 48/13.
Google Scholar
[12]
I. Konyashin, B. Straumal, S. Hlawatschek, B. Ries, et al. Functionally Graded Cemented Carbides Obtained on the Basis of Capillarity Phenomena, Part II. Co drifts at various WC grain sizes and carbon contents, submitted to J. Mater. Sci., (2015).
DOI: 10.1016/j.matlet.2015.12.038
Google Scholar
[13]
M. Greenfield, US Patent 5, 623, 723 (1997).
Google Scholar
[14]
J. Glätzle, R. Kösters, W. Glätzle, US Patent Application US2004/0009088 (2004).
Google Scholar
[15]
M. Collin, S. Norgren, Hardness gradients in WC-Co created by local addition of Cr3C2. In Proc. 16th Int. Plansee Seminar,G. Kneringer, P. Rödhammer, H. Wildner (Eds. ), 2005, V. 2., Reutte, Austria: Plansee Group, p.227 – 241.
Google Scholar
[16]
I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, A. Sologubenko, T. Weirich. A New Approach to Fabrication of Gradient WC-Co Hardmetals, Int. J. Refractory Met. Hard Mater., 28 (2010) 228–237.
DOI: 10.1016/j.ijrmhm.2009.10.003
Google Scholar
[17]
I. Konyashin, S. Hlawatschek , B. Ries, F. Lachmann, T. Weirich, F. Dorn, A. Sologubenko. On the Mechanism of WC Coarsening in WC-Co Hardmetals with Various Carbon Contents. Int. J. Refractory Met. Hard Mat., 27 (2009) 234–243.
DOI: 10.1016/j.ijrmhm.2008.09.001
Google Scholar
[18]
I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann. Gradient WC-Co Structures Obtained by Regulated WC Re-Crystallization without Using Grain Growth Inhibitors. In Proc. 17th Int. Plansee Seminar, L. Sigl, P. Rödhammer, H. Wildner (Eds. ), 2009, V. 2,. Reutte, Austria: Plansee Group, p.6.
Google Scholar
[19]
H. Exner, H. Fischmeister, Gefügevergröberung in zweiphasigen Legierungen, Z. Metallkunde, 5(1966)187.
DOI: 10.1515/ijmr-1966-570304
Google Scholar
[20]
L. Skolnick, The kinetics of solution of tungsten carbide in molten cobalt, in: Kingery N, (Ed. ), Kinetics of High Temperature Processes, Technology Press MIT, 1959, 92.
DOI: 10.7551/mitpress/4061.003.0018
Google Scholar
[21]
H. Grewe, Einige Überlegungen zum Wachstum der Gefügekomponenten in einer Hartmetall-Legierung mit 11% Co, DEW-Technische Berichte, 13 (1973) 35.
Google Scholar
[22]
C. Buhsmer, P. Crayton, Carbon self-diffusion in tungsten carbide. J Mater Sci, 6(1971)981.
DOI: 10.1007/bf00549949
Google Scholar
[23]
I. Konyashin, Cemented carbides for mining construction and wear parts, in V.K. Sarin (Editor-in-Chief) and D. Mari & L. Llanes (Vol. Eds. ), Comprehensive Hard Materials, Elsevier Ltd, 2014. p.425–451.
DOI: 10.1016/b978-0-08-096527-7.00015-5
Google Scholar
[24]
I. Konyashin, B. Ries, F. Lachmann, A. T. Fry, A novel sintering technique for fabrication of functionally gradient WC–Co cemented carbides, J. Mater. Sci., 47 (2012), 7072-7084.
DOI: 10.1007/s10853-012-6516-x
Google Scholar
[25]
L. Zhang, Y. Wang, X. Yu et al. Crack propagation characteristics and toughness of functionally graded WC-Co cemented carbides. Int. J. Refract. Met. Hard Mater. 26(2008)295–300.
DOI: 10.1016/j.ijrmhm.2007.07.002
Google Scholar
[26]
Y. Liu Y, H. Wang, Z. Long, P. Liaw, J. Yang, B. Huang, Microstructural evolution and mechanical behaviors of graded cemented carbides. Mater. Sci. Eng. A, 426(2006) 346-354.
DOI: 10.1016/j.msea.2006.04.018
Google Scholar
[27]
Y. Liu, H. Wang, J. Yang, et al. Formation mechanism of cobalt-gradient structure in WC-Co hard alloy. J. Mater. Sci. 39, (2004)4397-4399.
DOI: 10.1023/b:jmsc.0000033437.75050.5d
Google Scholar
[28]
O. Eso, Z. Fang, A. Griffo, Liquid phase sintering of functionally graded WC-Co composites. Int. J. Refractory Met. Hard Mater., 23(2005)233-241.
DOI: 10.1016/j.ijrmhm.2005.04.017
Google Scholar
[29]
O. Eso, P. Fan, Z. Fang, A kinetic model for cobalt gradient formation during liquid phase sintering of functionally graded WC-Co. Int. J. Refractory Met. Hard Mater. 26(2008)91-97.
DOI: 10.1016/j.ijrmhm.2007.02.004
Google Scholar
[30]
O. Eso, P. Fan, Z. Fang, Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC-Co. Int. J. Refractory Met. Hard Mater., 25(2007)286-292.
DOI: 10.1016/j.ijrmhm.2006.07.002
Google Scholar
[31]
A. Maximenko, G. Roebben, J. Van Der Biest, Modelling of metal-binder migration during liquid-phase sintering of graded cemented carbides, Mater. Process Technol., 160(2005)261-369.
DOI: 10.1016/j.jmatprotec.2004.06.023
Google Scholar
[32]
A. F Lisovsky, Some problems on the technical use of the phenomenon of metal melts imbibition of sintered composites, Powder Met. Int., 19(1987)18-21.
Google Scholar
[33]
D. V. Suetin, I. R Shein, A. L. Ivanovskii, Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations, Physica B, 404(2009)3544-3549.
DOI: 10.1016/j.physb.2009.05.051
Google Scholar
[34]
Z. Fang, O. Eso, Liquid phase sintering of functionally graded WC-Co composites. Scripta Mater., 52(2005)785-791.
DOI: 10.1016/j.scriptamat.2004.12.008
Google Scholar
[35]
I. Konyashin, S. Hlawatschek, B. Ries. Engineered Surfaces on Cemented Carbides Obtained by Tailored Sintering Techniques. Surf. Coat. Technol., 258(2014)300-309.
DOI: 10.1016/j.surfcoat.2014.09.009
Google Scholar
[36]
I. Konyashin, B. Ries, F. Lachmann, A. T. Fry. Gradient Hardmetals: Theory and Practice. International Journal of Refractory Metals and Hard Materials, 36(2013)10-21.
DOI: 10.1016/j.ijrmhm.2011.12.010
Google Scholar
[37]
I. Konyashin S. Hlawatschek1, B. Ries , B. Baretzky, A. Mazilkin, Functionally Graded Cemented Carbides Obtained on the Basis of Capillarity Phenomena. Part II. Co Drifts at Various WC Grain Sizes and Carbon Contents, submitted to J. Mater. Sci. (2015).
DOI: 10.1016/j.matlet.2015.12.038
Google Scholar
[38]
I. Konyashin, B. Ries, F. Lachmann A hard-metal body. PCT Patent Application WO2010/097784A1, (2010).
Google Scholar
[39]
I. Konyashin, B. Ries, F. Lachmann, PCT Patent Application WO2010/103418A1 (2010).
Google Scholar
[40]
J. Guo, F. Wang et al., A novel approach for manufacturing functionally graded cemented tungsten carbide composites, Advanced in Powder Metallurgy & Particulate Materials, 2010, Metal Powder Industries Federation, Princeton, NJ, USA, 8/29-8/39.
Google Scholar
[41]
J. Guo, P. Fan, Z Fang, A new method for making graded WC-Co by carburizing heat treatment of fully densified WC-Co. Proc. 17th Int. Plansee Seminar, L. Sigl, P. Rödhammer, H. Wildner (eds. ), Reutte, 2009, V. 2, p.50/1 – 50/6.
Google Scholar
[42]
Z. Fang, P. Fan, J. Guo, US Patent Application US2010/0101368A1 (2010).
Google Scholar
[43]
B. Roebuck, M.G. Gee, R. Morrell. Hardmetals – microstructural design, testing and property maps. In: Kneringer G, Rödhammer P, Wildner H (Eds. ), Proceedings of the 15th International Plansee Seminar, 2001, Reutte, Plansee Group, Vol. 4, pp.245-266.
DOI: 10.1016/s0261-3069(01)00073-5
Google Scholar
[44]
I. Konyashin, B.B. Straumal, S. Hlawatschek, B. Ries, B. Baretzky, K. Kolesnikova, A. Mazilkin, Functionally Graded Cemented Carbides Obtained on the Basis of Capillarity Phenomena. Part III: A Mechanism Explaining Co Drifts in Cemented Carbides with Various Carbon Contents, submitted to J. Mater. Sci. (2015).
DOI: 10.1016/j.matlet.2015.12.038
Google Scholar
[45]
J. Gurland, L. Norton. Role of the binder phase in cemented tungsten carbide-cobalt alloys, J. Metals Trans., 4(1952)1051-6.
DOI: 10.1007/bf03397768
Google Scholar
[46]
L. Ramqvist, Wetting of metallic carbides by liquid copper, nickel, cobalt, and iron, Int. J. Powder Met., 1(1965)2-20.
Google Scholar
[47]
B.B. Straumal, I. Konyashin, B. Ries, K.I. Kolesnikova, A.A. Mazilkin, A.B. Straumal, A.M. Gusak, B. Baretzky. Pseudopartial wetting of WC/WC grain boundaries in cemented carbides. Mater. Let., 147(2015)105–108.
DOI: 10.1016/j.matlet.2015.02.029
Google Scholar
[48]
N. K Sharma, I. D Wards, H. L., Fraser, W. S. Williams, SREM analysis of grain boundaries in cemented carbides. J. American Ceram. Soc., 63(1980)194–196.
Google Scholar
[49]
A. Henjered, M. Hellsing, G. Nouet, A. Dubon, J. Laval, Quantitative microanalysis of carbide/carbide interfaces in WC-Co base cemented carbides. Mater. Sci. Technol., 2(1994)847–855.
DOI: 10.1179/mst.1986.2.8.847
Google Scholar
[50]
J. Weidow, H. -O. Andrén. Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions, Int. J. Refractory Met. Hard Mater., 29(2011)38–43.
DOI: 10.1016/j.ijrmhm.2010.06.010
Google Scholar
[51]
I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, M. Vukovic, Cobalt capping on WC–Co hardmetals. Part I: A mechanism explaining the presence or absence of cobalt layers on hardmetal articles during sintering, Int. J. Refractory Met. Hard Mater., 42(2014).
DOI: 10.1016/j.ijrmhm.2013.08.016
Google Scholar
[52]
I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, M. Vukovic, Cobalt Capping: A Technique for Improving the Transverse Rupture Strength, Fracture Toughness and Wettability by Braze Alloys of WC-Co Hardmetals, Proc. 18th Int. Plansee Seminar, L. Sigl, H. Kestler, J. Wagner (eds. ), Reutte, 2013, V. 2, p. HM4-HM25.
DOI: 10.1016/j.ijrmhm.2013.08.016
Google Scholar
[53]
D.S. Janisch, W. Lengauer, K. Rödiger, K. Dreyer, H. van den Berg, Cobalt capping: why is sintered hardmetal sometimes covered with binder? Int. J. Refractory Met. Hard Mater., 28(2010)466–471.
DOI: 10.1016/j.ijrmhm.2010.02.006
Google Scholar
[54]
J. Guo, P. Fan, X. Wang, Z. Z. Fang, Formation of Co-capping during sintering of straight WC–10 wt. % Co. Int. J. Refract Met. Hard Mate. r, 28(2010)317–323.
DOI: 10.1016/j.ijrmhm.2009.11.005
Google Scholar
[55]
E. Sachet, W. -D. Schubert, G. Mühlbauer, J. Yukimura, Y. Kubo, On the formation and in situ observation of thin surface layers of cobalt on sintered cemented carbides. Int. J. Refract Met. Hard Mater., 31(2012)96–108.
DOI: 10.1016/j.ijrmhm.2011.09.012
Google Scholar
[56]
C.R. Comer, US Patent No. US2004211493, (2004).
Google Scholar
[57]
Y. Taniguchi, H. Sasaki, M. Ueki, K. Kobori, Japan Patent No. 87-86314817 63169356, (1988).
Google Scholar
[58]
J. Baldoni, S. Bennett, US Patent 5310605 (1994).
Google Scholar
[59]
N. Minori, T. Masaaki, N. Toshio, US Patent 4911989 (1990).
Google Scholar
[60]
I. Konyashin, B. Ries, F. Lachmann. PCT Patent Application WO2012/098102A1 (2012).
Google Scholar
[61]
K.A. Thorsen. Aluminium contamination of cemented carbides during sintering, Advances in Powder Metallurgy & Particulate Materials, 8(1992)45-60.
Google Scholar
[62]
K. A Thorsen,. H Fordsmand,. P. L. Praestgaard, K. A Thorsen, H. Fordsmand, P. L. Praestgaard, An explanation of wettability problems when brazing cemented carbides, Welding Research, 63(10)(1984)308-315.
Google Scholar
[63]
A. Lisovsky, Thermodynamics of isolated pores filled with liquid in sintered composite materials Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 25A(4)(1994)733-740.
DOI: 10.1007/bf02665450
Google Scholar
[64]
I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, M. Vukovic, Cobalt capping on WC–Co hard metals. Part II: A technology for fabrication of Co coated articles during sintering, Int. J. Refractory Met. Hard Mater., 42(2014)136–141.
DOI: 10.1016/j.ijrmhm.2013.08.015
Google Scholar
[65]
I. Konyashin, Healing of Surface Defects in Hard Materials by Thin Coatings. Vacuum Sci. Technol. A, 14(2)(1996)447-452.
DOI: 10.1116/1.580104
Google Scholar
[66]
I. Konyahsin, CVD Coated Hardmetals - Causes of Transverse Rupture Strength Decrease. Functional Mater., l(1994)106-110.
Google Scholar
[67]
A. Eder, W. Lengauer, K. Dreyer, H. van den Berg, H. -W. Daub, D. Kassel, Phase formation during sintering of functionally graded hardmetals. Proc. 16th Plansee Seminar 2005, Vol. 3, pp.81-94.
Google Scholar
[68]
W. Lengauer, Diffusional control of the near-surface microstructure in functional gradient hardmetals. Materialwiss. Werkstofftechn., 36(10)(2005)460-466.
DOI: 10.1002/mawe.200500906
Google Scholar
[69]
D. Janisch, W. Lengauer, A. Eder, K. Dreyer, K. Rödiger, H. -W. Daub, D. Kassel, H. van den Berg, Nitridation sintering of WC-Ti(C, N)-Ta(C, N)C-Co hardmetals, Int. J. Refractory Met. Hard Mater., 36(2013)22-30.
DOI: 10.1016/j.ijrmhm.2011.12.013
Google Scholar
[70]
W. Lengauer, Transition Metal Carbides, Nitrides and Carbonitrides. In: Handbook of Ceramic Hard Materials, Vol. I, pp.202-252, ed. R. Riedel, Wiley-VCH, Weinheim (2000).
DOI: 10.1002/9783527618217.ch7
Google Scholar
[71]
R. Frykholm, M. Ekroth, B. Jansson, J. Ågren, H. -O. Andrén, A new labyrinth factor for modelling the effect of binder volume fraction on gradient sintering of cemented carbides. Acta Mater., 51(2003)1115-1121.
DOI: 10.1016/s1359-6454(02)00515-3
Google Scholar
[72]
R. Frykholm, B. Jansson, H. -O. Andrén, The influence of carbon content on formation of carbo-nitride free surface layers in cemented carbides, Int. J. Refractory Met. Hard Mater.,; 20(2002)345-353.
DOI: 10.1016/s0263-4368(02)00034-3
Google Scholar
[73]
J. Glühmann, M. Schneeweiß, H. van den Berg, D. Kassel, K. Rödiger, K. Dreyer, W. Lengauer, Functionally graded WC-Ti(C, N)-(Ta, Nb)C-Co hardmetals: metallurgy and performance, Int. J. Refractory Met. Hard Mater., 36(2013)38-45.
DOI: 10.1016/j.ijrmhm.2011.12.009
Google Scholar
[74]
A. Eder, W. Lengauer, K. Dreyer, H. van den Berg, H. -W. Daub, D. Kassel D, Gradient microstructure engineering in hardmetals. Proc. 16th Plansee Seminar 2005, Vol. 3, pp.120-135.
Google Scholar
[75]
D. Janisch, W. Lengauer, K. Rödiger, K. Dreyer, H. van den Berg, Novel fine-grained hardmetals by use of multiphase powder precursors and reactive nitrogen sintering, Int. J. Refractory Met. Hard Mater.,; 28(2010)362-369.
DOI: 10.1016/j.ijrmhm.2009.11.012
Google Scholar