Doped Ceria Based Solid Oxide Fuel Cell Electrolytes and their Sintering Aspects: An Overview

Article Preview

Abstract:

Depletion of fossil fuel at an alarming rate is a major concern of humankind. Consequently, researchers all over the world are putting a concerted effort for finding alternative and renewable energy. Solid oxide fuel cell (SOFC) is one such system. SOFCs are electrochemical devices that have several advantages over conventional power generation systems like high efficiency of power generation, low emission of green house gases and the fuel flexibility. The major research focus of recent times is to reduce the operating temperature of SOFC in the range of 500 to 700 °C so as to render it commercially viable. This reduction in temperature is largely dependent on finding an electrolyte material with adequate oxygen ion conductivity at the intended operating temperature. One much material is Gadolinia doped Ceria (CGO) that shows very good oxygen ion conductivity at the intended operation temperature. The aim of this overview is to highlight the contribution that materials chemistry has made to the development of CGO as an electrolyte.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

199-236

Citation:

Online since:

January 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Saidi, S. Hammami, The impact of CO2 emissions and economic growth on energy consumption in 58 countries, Energy Reports, 1 (2015) 62-70.

DOI: 10.1016/j.egyr.2015.01.003

Google Scholar

[2] T.A. Adams, J. Nease, D. Tucker, P.I. Barton, Energy conversion with solid oxide fuel cell systems: A review of concepts of outlooks for the short and long term, Ind. Eng. Chem. Res. 52 (2013) 3089-3111.

DOI: 10.1021/ie300996r

Google Scholar

[3] S.P.S. Badwal, S. Giddey, C. Munnings, A. Kulkarni, Review of progress in high Temperature solid oxide fuel cells, J. Aust. Ceram. Soc. 50 (2014) 23-37.

DOI: 10.1002/chin.201531316

Google Scholar

[4] K.V. Kordesch, G.R. Simader, Environmental impact of fuel cell Technology, Chem. Rev. 95 (1995) 191-207.

DOI: 10.1021/cr00033a007

Google Scholar

[5] M.L. Faro, D.L. Rosa, V. Antonucci, A.S. Arico, Intermediate temperature solid oxide fuel cell electrolytes, J. Ind. Inst. Sci. 89 (2009) 363-380.

DOI: 10.1002/chin.201137207

Google Scholar

[6] A.B. Satmbouli, E. Traversa, Fuell cells, an alternative to standard sources of energy, Renew. Sust. Energy Rev. 6 (2002) 297-306.

Google Scholar

[7] A.B. Satmbouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renew. Sust. Energy Rev. 6 (2002) 433-455.

DOI: 10.1016/s1364-0321(02)00014-x

Google Scholar

[8] A.M. Omer, Energy, environment and sustainable development, Renew. Sustain. Energy Rev. 12 (2008) 2265–2300.

Google Scholar

[9] L. Malavasi, C. A. J. Fisher M. Saiful Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features, Chem. Soc. Rev. 39 (2010) 4370-4387.

DOI: 10.1039/b915141a

Google Scholar

[10] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta. 45 (2000) 2423-2435.

DOI: 10.1016/s0013-4686(00)00330-3

Google Scholar

[11] M. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Rational SOFC material design: new advances and tools, Mater. Today. 14 (2011) 534-546.

DOI: 10.1016/s1369-7021(11)70279-6

Google Scholar

[12] G.J.K. Acres, Recent advances in fuel cell technology and its applications, J. Power Sources. 100 (2001) 60–66.

DOI: 10.1016/s0378-7753(01)00883-7

Google Scholar

[13] S.P.S. Badwal, Stability of solid oxide fuel cell components, Solid State Ionics. 143 (2001) 39- 46.

DOI: 10.1016/s0167-2738(01)00831-1

Google Scholar

[14] M. Belmonte, Advanced ceramic materials for high temperature applications, Adv. Eng. Mater. 8 (2006) 693-703.

DOI: 10.1002/adem.200500269

Google Scholar

[15] M. Dokiya, SOFC system and technology, Solid State Ionics. 152– 153 (2002) 383-392.

DOI: 10.1016/s0167-2738(02)00345-4

Google Scholar

[16] V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics. 174 (2004) 135-149.

DOI: 10.1016/j.ssi.2004.06.015

Google Scholar

[17] J.A. Kilner, Fast oxygen transport in acceptor doped oxides, Solid State Ionics. 129 (2000) 13-23.

DOI: 10.1016/s0167-2738(99)00313-6

Google Scholar

[18] N.Q. Minh, Ceramic fuel cells, J. Am. Ceram. Soc. 76 (1993) 563-588.

Google Scholar

[19] J. B. Goodenough, Oxide-ion conductors by design, Nature. 404 (2000) 821-823.

DOI: 10.1038/35009177

Google Scholar

[20] J. B. Goodenough, Ceramic solid electrolytes, Solid State Ionics. 94 (1997) 17-25.

DOI: 10.1016/s0167-2738(96)00501-2

Google Scholar

[21] S. Hui, J. Roller, S. Yick, X. Zhang, C. Dec`es-Petit, Y. Xie, R. Maric, D. Ghosh, A brief review of the ionic conductivity enhancement for selected oxide electrolytes, J. Power Sources. 172 (2007) 493-502.

DOI: 10.1016/j.jpowsour.2007.07.071

Google Scholar

[22] N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells, Annu. Rev. Mater. Res. 33 (2003) 183-213.

DOI: 10.1146/annurev.matsci.33.022802.094122

Google Scholar

[23] B.C.H. Steele, Oxygen transport and exchange in oxide ceramics, J. Power Sources. 49 (1994) 1-14.

Google Scholar

[24] B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature. 414 (2001) 345-352.

DOI: 10.1038/35104620

Google Scholar

[25] B.C.H. Steele, Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness? Solid State Ionics. 134 (2000) 3-20.

DOI: 10.1016/s0167-2738(00)00709-8

Google Scholar

[26] E. Ivers-Tiffee, A. Weber, D. Herbstritt, Materials and technologies for SOFC-components, J. Euro. Ceram. Soc. 21 (2001) 1805-1811.

DOI: 10.1016/s0955-2219(01)00120-0

Google Scholar

[27] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, Recent developments in solid oxide fuel cell materials, 1 (2001) 117-131.

DOI: 10.1002/1615-6854(200107)1:2<117::aid-fuce117>3.0.co;2-y

Google Scholar

[28] H. Yokokawa, Understanding materials compatibility, Annu. Rev. Mater. Res. 33 (2003) 581-610.

DOI: 10.1146/annurev.matsci.33.022802.093856

Google Scholar

[29] M.C. Williams, Solid oxide fuel cells: Fundamentals to systems, Fuel Cells. 7 (2007) 78-85.

DOI: 10.1002/fuce.200500219

Google Scholar

[30] R.A. George, Status of tubular SOFC field unit demonstrations, J. Power Sources 86 (2000) 134-139.

DOI: 10.1016/s0378-7753(99)00413-9

Google Scholar

[31] A. Weber, E. Ivers-Tiffe´e, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, J. Power Sources. 127 (2004) 273-283.

DOI: 10.1016/j.jpowsour.2003.09.024

Google Scholar

[32] J.V. Mierlo, G. Maggetto, Fuel Cell or Battery: Electric Cars are the Future, Fuell Cells. 7 (2007) 165-173.

DOI: 10.1002/fuce.200600052

Google Scholar

[33] S.M. Haile, Fuel cell materials and components, Acta Mat. 51 (2003) 5981-6000.

Google Scholar

[34] J.P.P. Huijsmans, F.P. F ven Berkel, G.M. Christie, Intermediate temperature SOFC- A promise for the 21st century, J. Power Sources. 71 (1998) 107-110.

DOI: 10.1016/s0378-7753(97)02789-4

Google Scholar

[35] F. Panik, Fuel cells for vehicle applications in cars- bringing the future closer, J. Power Sources. 7 (1998) 36-38.

DOI: 10.1016/s0378-7753(97)02805-x

Google Scholar

[36] S McCahey, J.T. McMullan and B.C. Williams, Technical and economic considerations of solid oxide fuel cell systems, Dev. Chem. Eng. Mineral Process. 5 (1997) 221-234.

DOI: 10.1002/apj.5500050305

Google Scholar

[37] J. Van Mierlo, G. Maggetto, Ph. Lataire, Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles, Energy Conversion. Management. 47 (2006) 2748-2760.

DOI: 10.1016/j.enconman.2006.02.004

Google Scholar

[38] C. Xia, Y. Lang, G. Meng, Recent advances to the development of low temperature solid oxide fuel cell, Fuel cells. 4 (2004) 41-47.

DOI: 10.1002/fuce.200400003

Google Scholar

[39] R.M. Ormerod, Solid oxide fuel cells, Chem. Soc. Rev. 32 (2003) 17–28.

Google Scholar

[40] V. Kozhukharov, N. Brashkova, M. Ivanova, J. Carada, M. Machkova, Ceramic materials for SOFCs: Current status, Bol. Soc. Esp. Cerám. Vidrio, 41 (2002) 471-480.

DOI: 10.3989/cyv.2002.v41.i5.666

Google Scholar

[41] A.S. Nesaraj, Recent development in solid oxide fuel cell technology, J. Sci. Ind. Res. 69 (2010) 169-176.

Google Scholar

[42] N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, S. Assabumrungrat, Reviews on solid oxide fuel cell technology, Eng. J. 13 (2009) 65-83.

DOI: 10.4186/ej.2009.13.1.65

Google Scholar

[43] F.M.L. Figueiredo, F.M.B. Marques, Electrolytes for solid oxide fuel cell, WIRES Energy Environ. 2 (2013) 52-72.

Google Scholar

[44] W.R. Grove, On voltaic series and the combination of gases by platinium, Phil. Mag. 14 (1839) 127-130.

Google Scholar

[45] H.M. Smith, The Nersnst Lamp, Science. 8 (1898) 689-690.

Google Scholar

[46] H.C. Copper, The Nernst light, Science. 8 (1898) 710.

Google Scholar

[47] H. H. Mobius, On the history of solid electrolyte fuel cells, J. Solid State Electrochem. 1 (1997) 2-16.

Google Scholar

[48] A.J. Jacobson, Materials for solid oxide fuel cell, Chem. Mater. 22 (2010) 660-674.

Google Scholar

[49] P. Datta, Doped LaGaO3 based solid oxide fuel cell materials and their sintering aspects: an overview, Mater. Sci. Forum. 624 (2009) 109-137.

DOI: 10.4028/www.scientific.net/msf.624.109

Google Scholar

[50] A. Lashtabeg, S.J. Skinner, Solid oxide fuel cells—a challenge for materials chemists? J. Mater. Chem. 16 (2006) 3161-70.

DOI: 10.1039/b603620a

Google Scholar

[51] J. W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources. 162 (2006) 30-40.

DOI: 10.1016/j.jpowsour.2006.06.062

Google Scholar

[52] R.J. Gorte, Recent developments towards commercialization of solid oxide fuel cells, Am. Inst. Chem. Engg. 51 (2005) 2377-2381.

DOI: 10.1002/aic.10621

Google Scholar

[53] B. Liu, Y. Zhang, Status and prospects of intermediate temperature solid oxide fuel cells, J. Univ. Sci. Technol. Beijing. 15 (2008) 84-90.

Google Scholar

[54] P. Holtappels, U. Vogt, T. Graule, Ceramic materials for advanced solid oxide fuel cells, Adv. Eng. Mater. 7 (2005) 292-302.

DOI: 10.1002/adem.200500084

Google Scholar

[55] P. Singh, N.Q. Minh, Solid Oxide Fuel Cells: Technology Status, Int. J. Appl. Ceram. Technol. 1 (2004) 5-15.

Google Scholar

[56] A. Tarancón, Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature, Energies 2(2009) 1130-1150.

DOI: 10.3390/en20401130

Google Scholar

[57] L. Fan, C. Wang, M. Chen, B. Zhu, Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells, J. Power Sources. 234 (2013) 154-174.

DOI: 10.1016/j.jpowsour.2013.01.138

Google Scholar

[58] N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, The Netherlands, (1995).

Google Scholar

[59] P. Huang, A. Petric, Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium, J. Electrochem. Soc. 143 (1996) 1644-1648.

DOI: 10.1149/1.1836692

Google Scholar

[60] B.C.H. Steele, Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C, Solid State Ionics. 129 (2000) 95-110.

DOI: 10.1016/s0167-2738(99)00319-7

Google Scholar

[61] M. Mogensen, N.M. Sammes, G.F. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics. 129 (2000) 63-94.

DOI: 10.1016/s0167-2738(99)00318-5

Google Scholar

[62] S.P.S. Badwal, F.T. Ciacchi, Oxygen ion conducting electrolyte materials for solid oxide fuel cell, Ionics. 6 (2000) 1-21.

DOI: 10.1007/bf02375543

Google Scholar

[63] J.A. Kilner, Fast anion transport in solids, Solid State Ionics. 8 (1983) 201-207.

DOI: 10.1016/0167-2738(83)90017-6

Google Scholar

[64] R.D. Shannon and C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Cryst. B25 (1969) 925-946.

DOI: 10.1107/s0567740869003220

Google Scholar

[65] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics. 52 (1992) 165-172.

DOI: 10.1016/0167-2738(92)90102-u

Google Scholar

[66] D.J.M. Bevan, E. Summerville, Mixed rare earth oxides, in: K.A. Gschneidner, L. Eyring (Eds. ), Handbook on the Physics and Chemistry of Rare Earths, North Holland, Amsterdam, Vol 3, 1979, p.401−524.

DOI: 10.1016/s0168-1273(79)03011-7

Google Scholar

[67] S. Anawar, Optimization of ionic conductivity in doped ceria using density functional theory and kinetic lattice monte cralo, PhD Thesis, Arizona State University, USA, (2011).

Google Scholar

[68] S.P.S. Badwal, Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics. 52 (1992) 23-32.

DOI: 10.1016/0167-2738(92)90088-7

Google Scholar

[69] R.J. Stafford, S.J. Rothman, L.J. Routbort, Effect of dopant size on the ionic conductivity of cubic stabilised ZrO2, Solid State Ionics. 37 (1989) 67-72.

DOI: 10.1016/0167-2738(89)90289-0

Google Scholar

[70] D.U. Wang, D.S. Park, J. Griffith, A.S. Nowick, Oxygen-ion conductivity and defect interactions in yttria-doped ceria, Solid State Ionics. 2 (1981) 95-105.

DOI: 10.1016/0167-2738(81)90005-9

Google Scholar

[71] P.P. Dholabhai, J.B. Adams, P. Crozier, R. Sharma, A density functional study of defect migration in gadolinium doped ceria, Phys. Chem. Chem. Phys. 12 (2010) 7904-7910.

DOI: 10.1039/b924534k

Google Scholar

[72] J. Faber, C. Geoffroy, A. Roux, A. Sylvestre and P. Abelard, A Systematic investigation of the dc electrical conductivity of rare-earth doped ceria, Appl. Physics A: Mater. Sci. Process. 49 (1989) 225-232.

DOI: 10.1007/bf00616848

Google Scholar

[73] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, J. Appl. Electrochem. 18 (1988) 527-531.

DOI: 10.1007/bf01022246

Google Scholar

[74] R. Gerhardt-Anderson, A.S. Nowick, Ionic conductivity of CeO2 with trivalent dopants of different ionic radii, Solid State Ionics. 5 (1981) 547-550.

DOI: 10.1016/0167-2738(81)90313-1

Google Scholar

[75] V. Butler, C.R.A. Catlow, B.E.F. Fender, J.H. Harding, Dopant ion radius and ionic conductivity in cerium dioxide, Solid State Ionics. 8 (1983) 109-113.

DOI: 10.1016/0167-2738(83)90070-x

Google Scholar

[76] L. Minervini, M.O. Zacate and R.W. Grimes, Defect cluster formation in M2O3-doped CeO2, Solid State Ionics. 116 (1999) 339-349.

DOI: 10.1016/s0167-2738(98)00359-2

Google Scholar

[77] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics. 83 (1996) 1-16.

DOI: 10.1016/0167-2738(95)00229-4

Google Scholar

[78] H. Yahiro, K. Eguchi, H. Arai, Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell, Solid State Ionics. 36 (1989) 71-75.

DOI: 10.1016/0167-2738(89)90061-1

Google Scholar

[79] D.L. Maricle, T.E. Swarr, S. Karavolis, Enhanced ceria-a low-temperature SOFC electrolyte, Solid State Ionics. 52 (1992) 173-182.

DOI: 10.1016/0167-2738(92)90103-v

Google Scholar

[80] S.P.S. Badwal, F.T. Ciacchi, J. Drennan, Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments, Solid State Ionics. 121 (1999) 253-262.

DOI: 10.1016/s0167-2738(99)00044-2

Google Scholar

[81] T. Inoue, T. Setoguchi, K. Eguchi, H. Arai, Study of a solid oxide fuel cell with a ceria-based solid electrolyte, Solid State Ionics. 35 (1989) 285-291.

DOI: 10.1016/0167-2738(89)90310-x

Google Scholar

[82] A. Tsoga, A. Naoumidis, D. Stover, Total electrical conductivity and defect structure of ZrO2–CeO2–Y2O3–Gd2O3 solid solutions, Solid State Ionics. 135 (2000) 403-409.

DOI: 10.1016/s0167-2738(00)00477-x

Google Scholar

[83] B. C. H. Steele, Oxygen ion conductors, in: T. Takahashi (Ed), High Conductivity Solid Ionic Conductors, Recent Trends and Applications, World Scientific, Singapore, 1989, pp.402-446.

DOI: 10.1142/9789814434294_0015

Google Scholar

[84] M.A. Panhans, R.N. Bluementhal, A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide, Solid State Ionics. 60 (1993) 279-298.

DOI: 10.1016/0167-2738(93)90006-o

Google Scholar

[85] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, Electrical properties and microstructure in the system ceria-alkaline earth oxide, J. Mater. Sci. 23 (1998) 1036-1041.

DOI: 10.1007/bf01154008

Google Scholar

[86] H. Arai, T. Kunisaki, Y. Shimizu, T. Seiyama, Electrical properties of calcia-doped ceria with oxygen ion conduction, Solid State Ionics. 20 (1986) 241-248.

DOI: 10.1016/0167-2738(86)90041-x

Google Scholar

[87] R.T. Dirstine, R.N. Blumenthal, T.F. Kuech, Ionic conductivity of calcia, yttria, and rare earth‐doped eerium dioxide, J. Electrochem. Soc. 126 (1979) 264-269.

DOI: 10.1149/1.2129018

Google Scholar

[88] J.A. Kilner, Defects and conductivity in ceria-based oxides, Chem. Lett. 37 (2008) 1012-1015.

DOI: 10.1246/cl.2008.1012

Google Scholar

[89] J.A. Kilner, B.C.H. Steele, Mass transport in anion-deficient fluorite oxides, in: O.T. Sorensen (ed), Non-stoichiometric oxides, Academic Press, New York, 1981, pp.233-269.

DOI: 10.1016/b978-0-12-655280-5.50010-9

Google Scholar

[90] J.A. Kilner, C.D. Waters, The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides, Solid State Ionics. 6 (1982) 253-259.

DOI: 10.1016/0167-2738(82)90046-7

Google Scholar

[91] D.J. Kim, Ionic conductivities, and solubility limits in fluorite structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions, J. Am. Ceram. Soc. 72 (1989) 1415-1421.

DOI: 10.1111/j.1151-2916.1989.tb07663.x

Google Scholar

[92] J.G. Allpress, H.J. Rossell, A microdomain description of defective fluorite-type phases Ca xM1-xO 2-x( M =Zr, Hf; x = 0. 1-0. 2), J. Solid State Chem. 15 (1975) 68-78.

DOI: 10.1016/0022-4596(75)90272-8

Google Scholar

[93] A. Nakamura, J.B. Wagner, Defect Structure, Ionic Conductivity and Diffusion in Calcia Stabilized Zirconia, J. Electrochem. Soc. 127 (1980) 2325-2333.

DOI: 10.1149/1.2129406

Google Scholar

[94] V.N. Chebotin, V.A. Merzin, Ordering of defects, thermodynamic and transport properties of solid oxide electrolytes with fluorite structure, Physica Status Solidi A. 89 (1985) 199-211.

DOI: 10.1002/pssa.2210890120

Google Scholar

[95] K. Ando, Y. Oishi, Diffusion characteristics of actinide oxides, J. Nucl. Sci. Technol. 20 (1983) 973-982.

Google Scholar

[96] H. Matzke, Fluorine self-diffusion in CaF2 and BaF2, J. Mater. Sci. 5 (1970) 831-836.

DOI: 10.1007/bf00574851

Google Scholar

[97] M. Beniere, M. Chemla, Anion diffusion mechanism in strontium chloride single crystals, J. Phys. Chem. Solids. 40 (1979) 729-737.

DOI: 10.1016/0022-3697(79)90155-0

Google Scholar

[98] S. Wang, H. Inaba, H. Tagawa, M. Dokiya, T. Hashimoto, Nonstoichiometry of Ce0. 9Gd0. 1O3-x, Solid State Ionics. 107 (1998) 73-79.

Google Scholar

[99] K. Ando, Y. Oishi, Y. Hidaka, Self-diffusion of oxygen in single crystal thorium oxide, J. Chem. Phys. 65 (1976) 2751-2755.

DOI: 10.1063/1.433419

Google Scholar

[100] K.C. Kim, D.R. Olander, Oxygen diffusion in UO2-x, J. Nucl. Mater. 102 (1981) 192-199.

Google Scholar

[101] J.W. Patterson, Conduction domains for solid electrolytes J. Electrochem. Soc. 118 (1971) 1033-1039.

Google Scholar

[102] H.L. Tuller, A.S. Nowick, Doped ceria as a solid electrolyte, J. Electrochem. Soc. 122 (1975) 255-259.

DOI: 10.1149/1.2134190

Google Scholar

[103] H.L. Tuller, Mixed ionic–electronic conduction in a number of fluorite and pyrochlore compounds, Solid State Ionics. 52 (1992) 135-146.

DOI: 10.1016/0167-2738(92)90099-b

Google Scholar

[104] T. Takahashi, T. Esaka, H. Iwahara, Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity, J. Appl. Electrochem. 7 (1977) 303-308.

DOI: 10.1007/bf01059170

Google Scholar

[105] T. Kudo, H. Obayashi, Oxygen ion conduction of the fluorite-Type Ce1-x LnxO2-x/2 (Ln = Lanthanoid Element) J. Electrochem. Soc. 123 (1976) 415-419.

DOI: 10.1149/1.2134143

Google Scholar

[106] I. Riess, D. Braunshtein, D.S. Tannhauser, Density and ionic conductivity of sintered (CeO2)0. 82 (GdO1. 5)0. 18 J. Am. Ceram. Soc. 64 (1981) 479-485.

DOI: 10.1111/j.1151-2916.1981.tb09901.x

Google Scholar

[107] R. Gerhardt, A.S. Nowick, The grain boundary conductivity effect in ceria doped with trivalent cations. Part-I electrical behavior, J. Am. Ceram. Soc. 69 (1986) 641-646.

DOI: 10.1111/j.1151-2916.1986.tb07464.x

Google Scholar

[108] S. Wang, T. Kobayashi, M. Dokiya, T. Hashimoto, Electrical and ionic conductivity of Gd‐doped Ceria, J. Electrochem. Soc. 147 (2000) 3606-3609.

DOI: 10.1149/1.1393946

Google Scholar

[109] S. Wang, T. Kato, S. Nagata, T. Kaneko, N. Iwashita, T. Honda, M. Dokiya, Electrodes and performance analysis of a ceria electrolyte SOFC, Solid State Ionics, 152-153 (2002) 477-484.

DOI: 10.1016/s0167-2738(02)00376-4

Google Scholar

[110] K. Huang, M. Feng, J.B. Goodenough, Synthesis and electrical properties of dense Ce0. 9Gd0. 1O1. 95 ceramics, J. Am. Ceram. Soc. 81 (1998) 357-362.

Google Scholar

[111] S.B. Adler, J.A. Lane, B.C.H. Steele, Electrode kinetics of porous mixed‐conducting oxygen electrodes, J. Electrochem. Soc. 143 (1996) 3554-3564.

DOI: 10.1149/1.1837252

Google Scholar

[112] H. L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics. 131 (2000) 143-157.

DOI: 10.1016/s0167-2738(00)00629-9

Google Scholar

[113] C. Y. Tian, S. W. Chan, Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3, Solid State Ionics. 134 (2000) 89-102.

DOI: 10.1016/s0167-2738(00)00717-7

Google Scholar

[114] D. Y. Wang, A. S. Nowick, The grain-boundary effect in doped ceria solid electrolytes, J. Solid State Chem. 35 (1980) 325-333.

DOI: 10.1016/0022-4596(80)90529-0

Google Scholar

[115] J. Maier, Ionic-conduction in-space charge regions, Prog. Solid State Chem. 23 (1995) 171-263.

DOI: 10.1016/0079-6786(95)00004-e

Google Scholar

[116] T. Suzuki, I. Kosacki, H. U. Anderson and P. Colomban, Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films, J. Am. Ceram. Soc. 84 (2001) 2007-(2014).

DOI: 10.1111/j.1151-2916.2001.tb00950.x

Google Scholar

[117] Y. M. Chiang, E. B. Lavik and D. A. Blom, Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2, Nanostruct. Mater. 9 (1997) 633-642.

DOI: 10.1016/s0965-9773(97)00142-6

Google Scholar

[118] Y. M. Chiang, E. B. Lavik, I. Kosacki, H. L. Tuller, J. Y. Ying, Defect and transport properties of nanocrystalline CeO2-x, Appl. Phys. Lett. 69 (1996) 185-187.

DOI: 10.1063/1.117366

Google Scholar

[119] A. Tschöpe, S. Kilassonia, B. Zapp, R. Birringer, Grain-size dependent thermopower of polycrystalline cerium oxide, Solid State Ionics. 149 (2002) 261-273.

DOI: 10.1016/s0167-2738(02)00279-5

Google Scholar

[120] G. M. Christie, F. P. F. van Berkel, Microstructure - Ionic conductivity relationships in ceria-gadolinia electrolytes, Solid State Ionics. 83 (1996) 17-27.

DOI: 10.1016/0167-2738(95)00155-7

Google Scholar

[121] X. D. Zhou, W. Huebner, I. Kosacki, H. U. Anderson, Microstructure and grain-boundary effect on electrical properties of gadolinium-doped ceria, J. Am. Ceram. Soc. 85 (2002) 1757-1762.

DOI: 10.1111/j.1151-2916.2002.tb00349.x

Google Scholar

[122] T. Mori, J. Drennan, J. H. Lee, J. G. Li and T. Ikegami, Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems, Solid State Ionics, 154 (2002) 461-466.

DOI: 10.1016/s0167-2738(02)00483-6

Google Scholar

[123] F. Y. Wang, B. Z. Wan and S. F. Cheng, Study on Gd3+ and Sm3+ codoped ceria-based electrolytes, J. Solid State Electrochem. 9 (2005) 168-173.

DOI: 10.1007/s10008-004-0575-0

Google Scholar

[124] T. Mori, T. Kobayashi, Y. Wang, J. Drennan, T. Nishimura, J. G. Li, H. Kobayashi, Synthesis and characterization of nano-hetero-structured Dy doped CeO2 solid electrolytes using a combination of spark plasma sintering and conventional sintering, J. Am. Ceram. Soc. 88 (2005).

DOI: 10.1111/j.1551-2916.2005.00260.x

Google Scholar

[125] T. Mori, Y. R. Wang, J. Drennan, G. Auchterlonie, J. G. Li and T. Ikegami, Influence of particle morphology on nanostructural feature and conducting property in Sm-doped CeO2 sintered body, Solid State Ionics. 175 (2004) 641-649.

DOI: 10.1016/j.ssi.2004.09.046

Google Scholar

[126] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0. 05 ≤ Gd/Ce ≤ 0. 4) prepared by oxalate coprecipitation, Solid State Ionics. 148 (2002) 567-573.

DOI: 10.1016/s0167-2738(02)00121-2

Google Scholar

[127] S. W. Zha, C. R. Xia and G. Y. Meng, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, J. Power Sources. 115 (2003) 44-48.

DOI: 10.1016/s0378-7753(02)00625-0

Google Scholar

[128] I. Kosacki, V. Petrovsky, H. U. Anderson, P. Colomban, Raman spectroscopy of nanocrystalline ceria and zirconia thin films, J. Am. Ceram. Soc. 85 (2002) 2646-2650.

DOI: 10.1111/j.1151-2916.2002.tb00509.x

Google Scholar

[129] T. Suzuki, I. Kosacki and H. U. Anderson, Defect and mixed conductivity in nanocrystalline doped cerium oxide, J. Am. Ceram. Soc. 85 (2002) 1492-1498.

DOI: 10.1111/j.1151-2916.2002.tb00302.x

Google Scholar

[130] A. Varez, E. Garcia-Gonzalez, J. Sanz Cation miscibility in CeO2–ZrO2 oxides with fluorite structure. A combined TEM, SAED and XRD Rietveld analysis, J. Mater. Chem. 16 (2006) 4249-4256.

DOI: 10.1039/b607778a

Google Scholar

[131] Z. Heiba, H. Okuyucu, Y. S. Hascicek, X-ray structure determination of the rare earth oxides (Er1-uGdu)2O3 applying the Rietveld method, J. Appl. Cryst. 35 (2002) 571-576.

DOI: 10.1107/s0021889802010555

Google Scholar

[132] H.L. Tuller, A.S. Nowick, Small polaron electron transport in reduced CeO2 single crystals, J. Phys. Chem. Solids. 38 (1977) 859-867.

DOI: 10.1016/0022-3697(77)90124-x

Google Scholar

[133] Y. Takasu, T. Sugino, Y. Matsuda, Electrical conductivity of praseodymia doped ceria. J. Applied Electrochem. 14 (1984) 79-81.

DOI: 10.1007/bf00611261

Google Scholar

[134] M. Nauer, C. Ftikos, B.C.H. Steele, An Evaluation of Ce-Pr Oxides and Ce-Pr-Nb Oxides Mixed Conductors for Cathodes of Solid Oxide Fuel Cells: Structure, Thermal Expansion and Electrical Conductivity, J. Euro. Ceram. Soc. 14 (1994) 493-499.

DOI: 10.1016/0955-2219(94)90118-x

Google Scholar

[135] P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of mixed conductors based on Ce1-xPrxO2 solid solutions, Solid State Ionics. 116 (1999) 217-223.

DOI: 10.1016/s0167-2738(98)00345-2

Google Scholar

[136] C.R.A. Catlow, Atomistic mechanisms of ionic transport in fast-ion conductors, J. Chem. Soc. Faraday Trans. 86 (1990) 1167-1176.

DOI: 10.1039/ft9908601167

Google Scholar

[137] G. Boureau, S. Carniato, Apparent discrepancies between thermodynamic data and theoretical calculations of the formation energy of an oxygen vacancy in silica, Solid State Comm. 98 (1996) 485-487.

DOI: 10.1016/0038-1098(96)00148-2

Google Scholar

[138] I.E. Stephens, J.A. Kilner, Ionic conductivity of Ce1-xNdxO2-x/2, Solid State Ionics. 177 (2006) 669-676.

DOI: 10.1016/j.ssi.2006.01.010

Google Scholar

[139] R.M. Dell, A. Hooper, Oxygen ion conductors, in: P. Hagenmuller, W. Van Gool (eds. ), Solid Electrolytes: General principles, Characterization, Materials, Applications, Academic Press, New York, 1978, pp.291-311.

DOI: 10.1016/b978-0-12-313360-1.50023-7

Google Scholar

[140] A. Trovarelli, Structural properties and nonstoichiometric behavior of CeO2, in: A. Trovarelli (ed. ), Catalysis by Ceria and Related Materials, Imperial College Press, London, GBR 2002, pp.15-50.

DOI: 10.1142/9781860949654_0002

Google Scholar

[141] M. Kamiyaa, E. Shimadaa, Y. Ikumaa, M. Komatsua, H. Hanedaa, S. Sameshimaa, Y. Hirata, Oxygen self-diffusion in cerium oxide doped with Nd, J. Mater. Res. 16 (2001) 179-184.

Google Scholar

[142] L. Eyring, The binary rare earth oxides, in: K.A. Gschneidner, L. Eyring (Eds. ), Handbook on the Physics and Chemistry of Rare Earths, North Holland, Amsterdam, Vol 3, 1979, p.337−399. 337−399.

DOI: 10.1016/s0168-1273(79)03010-5

Google Scholar

[143] N. Stelzer, J. Nolting, I. Reiss, Phase diagram of nonstoichoimetric 10 mol% Gd2O3 doped cerium oxide determined from specific heat measurements, J. Solid State Chem. 117 (1995) 392-397.

DOI: 10.1006/jssc.1995.1290

Google Scholar

[144] A. Atkinson, Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes, Solid State Ionics. 95 (1997) 249-258.

DOI: 10.1016/s0167-2738(96)00588-7

Google Scholar

[145] H.L. Tuller, Defect engineering: design tools for solid state electrochemical devices, Electrochim. Acta. 48 (2003) 2879-2887.

DOI: 10.1016/s0013-4686(03)00352-9

Google Scholar

[146] J.L.M. Rupp, C. Solenthaler, P. Gasser, U.P. Muecke, L.J. Gauckler, Crystallization of amorphous cera solid solution, Acta Met. 55 (2007) 3505-2512.

DOI: 10.1016/j.actamat.2007.02.002

Google Scholar

[147] E. Wachtel, I. Lubomirsky, The elastic modulus of pure and doped ceria, Scripta Met. 65 (2011) 112-117.

DOI: 10.1016/j.scriptamat.2010.09.021

Google Scholar

[148] M. Morales, J.J. Roa, X.G. Capdevila, M. Segarra, S. Pinol, Mechanical properties at the nanometer scale of GDC and YSZ used as electrolytesfor sloid oxide fuel cells, Acta Met. 58 (2010) 2504-2509.

DOI: 10.1016/j.actamat.2009.12.036

Google Scholar

[149] Y.L. Wang, K. Duncan, E.D. Wachsman, F. Ebrahimi, The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides, Solid State Ionics. 178 (2007) 53-58.

DOI: 10.1016/j.ssi.2006.11.003

Google Scholar

[150] K. Sato, H. Yugami, T. Hashida, Effect of rare-earth oxides on fracture properties of ceria ceramics, J. Mater. Sci. 39 (2004) 5765-5770.

DOI: 10.1023/b:jmsc.0000040087.37727.cd

Google Scholar

[151] A. Atkinson, A. Selcuk, Mechanical behaviour of ceramic oxygen ion conducting membranes, Solid State Ionics. 134 (2000) 59-56.

DOI: 10.1016/s0167-2738(00)00714-1

Google Scholar

[152] K.R. Reddy, K. Karan, Sinterability, Mechanical, Microstructural, and Electrical Properties of Gadolinium-Doped Ceria Electrolyte for Low-Temperature Solid Oxide Fuel Cells, J. Electroceram. 15 (2005) 45-56.

DOI: 10.1007/s10832-005-1099-4

Google Scholar

[153] K. Yasuda, K Uemura and T Shiota, Sintering and mechanical properties of gadolinium-doped ceria ceramics, J. Phys. Conf. Ser. 339 (2012) 1-4.

DOI: 10.1088/1742-6596/339/1/012006

Google Scholar

[154] F. Gallmeier, O. Bellon, N.M. Sammes, J. Staniforth, Mechanical properties and electrochemical characterisation of extruded doped cerium oxide for use as an electrolyte for solid oxide fuel cells, J. Power Sources. 75 (1998) 116-121.

DOI: 10.1016/s0378-7753(98)00104-9

Google Scholar

[155] S. Maschio, O. Sbaizero and S. Meriani, Mechanical properties in the ceria-zirconia system, J. Eur. Ceram. Soc. 9 (1992) 127-132.

DOI: 10.1016/0955-2219(92)90054-h

Google Scholar

[156] T. S. Zhang, J. Ma, L. B. Kong, P. Hing J. A. Kilner, Preparation and mechanical properties of dense Ce0. 8Gd0. 2O2-δ ceramics, Solid State Ionics. 167 (2004) 191-196.

DOI: 10.1016/j.ssi.2003.11.025

Google Scholar

[157] N. Sammes, G. Tompsett, Y. J. Zhang, A. Cartner and R. Torrens, The structural and mechanical properties of (CeO2)1-x(GdO1. 5)x electrolytes, Denki Kagaku. 64 (1996) 674-680.

DOI: 10.5796/kogyobutsurikagaku.64.674

Google Scholar

[158] J. E. Shemilt, H. M. Williams, M. J. Edirisinghe, J. R. G. Evans, B. Ralph, Fracture toughness of doped-ceria ceramics, Scripta Mater. 36 (1997) 929-934.

DOI: 10.1016/s1359-6462(96)00464-2

Google Scholar

[159] T. S. Zhang, Z. Q. Zeng, H. T. Huang, P. Hing, J. Kilner, Effect of alumina addition on the electrical and mechanical properties of Ce0. 8Gd0. 2O2-δ ceramics, Mater. Lett. 57 (2002) 124-129.

DOI: 10.1016/s0167-577x(02)00717-6

Google Scholar

[160] J.L. Routbort, K.C. Goretta, A.R. de Arellano-Lopez, J. Wolfenstine, Creep of Ce0. 9Gd0. 1O1. 95, Scripta Met. 38 (1998) 315-320.

DOI: 10.1016/s1359-6462(97)00452-1

Google Scholar

[161] R. Freer, Self-diffusion and impurity diffusion in oxides. J. Mater. Sci. 15 (1980) 803–824.

DOI: 10.1007/bf00552089

Google Scholar

[162] H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, D, A.A. Khanlou, Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid State Ionics. 138 (2000) 79–90.

DOI: 10.1016/s0167-2738(00)00770-0

Google Scholar

[163] P. Datta, P. Majewski, F. Aldinger, Thermal expansion behaviour of Sr- and Mg- doped LaGaO3 solid electrolyte, J. Euro. Ceram. Soc. 29 (2009) 1463-1468.

DOI: 10.1016/j.jeurceramsoc.2008.08.029

Google Scholar

[164] H. Hayashi, M. Kanoh, C. Ji Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics. 132 (2000) 227-233.

DOI: 10.1016/s0167-2738(00)00646-9

Google Scholar

[165] S.V. Chavan, A.K. Tyagi, Phase relations and lattice thermal expansion studies in the Ce0. 50RE0. 50O1. 75 (RE = rare-earths), Mater. Sci. Eng. A 404 (2005) 57-63.

DOI: 10.1016/j.msea.2005.05.036

Google Scholar

[166] C. Artini, M. Pani, A. Lausi, R. Masini, G.A. Costa High Temperature Structural Study of Gd-doped ceria by synchrotron X-ray diffraction (673 K ≤ T ≤ 1073 K), Inorg. Chem. 53 (2014) 10140-10149.

DOI: 10.1021/ic5011242

Google Scholar

[167] A.K. Tyagi, B.R. Ambekar, M.D. Mathews, Simulation of lattice thermal expansion behaviour of Th1−xPuxO2 (0. 0≤x≤1. 0) using CeO2 as a surrogate material for PuO2, J. Alloys Compds. 337 (2002) 277-281.

DOI: 10.1016/s0925-8388(01)01964-8

Google Scholar

[168] A.C. Momin, M.D. Mathews, High temperature thermal expansion studies of pure vanadium dioxide, gadolinium oxide, and uranium oxide-1. 5 w % gadolinium oxide solid solution, Indian J. Chem. 15A (1977) 1096.

DOI: 10.1002/chin.197821008

Google Scholar

[169] D. Soysal, Z. Ilhan, A. Ansar, R. Costa, Nanostructured Composite Cathodes by Suspension Plasma Spraying for SOFC Applications, ECS Trans. 35 (2011) 2233-2241.

DOI: 10.1149/1.3570218

Google Scholar

[170] R. Maric, S. Seward, P.W. Faguy, M. Oljaca, Electrolyte materials for intermediate temperature fuel cells produced via combustion chemical vapor condensation, Electrochem. Solid-State Lett. 6 (2003) A91-95.

DOI: 10.1149/1.1562071

Google Scholar

[171] J.F. Baumard, P. Abelard, Defect Structure and transport properties of ZrO2 based solid electrolytes, in: N. Clausen, M. Ruhle, A.H. Heuer (Eds. ), Science and Technology of Zirconia II, Advances in Ceramics, The American Ceramics Society, Columbus, Ohio, Vol. 12, 1983, pp.555-571.

Google Scholar

[172] M. Kleitz, C. Pescher, L. Dessemond, Impedance spectroscopy of microstructure defects and crack characterization, in: S.P.S. Badwal, M.J. Bannister, R.H.J. Hannink (Eds. ), Science and Technology of Zirconia V, Technomic Publishing Company, Lancaster, PA, USA 1993, pp.593-610.

DOI: 10.1201/9781003421290-64

Google Scholar

[173] V. Besikiotis, Development of gadolinia doped ceria electrolyte for IT-SOFC, M. Sc Thesis, University of Twente, (2008).

Google Scholar

[174] D.D. Upadhyaya, R. Bhat, S. Ramanathan, S.K. Roy, H. Schuber, G. Petzow, Solute effect on grain growth in ceria ceramics, J. Eur. Ceram. Soc. 14 (1994) 337-341.

DOI: 10.1016/0955-2219(94)90070-1

Google Scholar

[175] M.N. Rahaman, Y.C. Zhou, Effect of solid solution additives on the sintering of ultra-fine CeO2 powders, J. Eur. Ceram. Soc. 15 (1995) 939-950.

DOI: 10.1016/0955-2219(95)00063-z

Google Scholar

[176] H. Inaba, T. Nakajima, H. Tagawa, Sintering behaviors of ceria and gadolinia-doped ceria Solid State Ionics. 106 (1998) 263-268.

DOI: 10.1016/s0167-2738(97)00496-7

Google Scholar

[177] K. El Adham, A. Hammou, Grain boundary effect on ceria based solid solutions, Solid State Ionics. 9-10 (1983) 905-912.

DOI: 10.1016/0167-2738(83)90109-1

Google Scholar

[178] R. Tanaka, W.S. Oliveira, A. Brandão, J.C.C. Abrantes, J.R. Frade, Grain boundary conductivity of heterogeneous ceria gadolinia, Electrochim. Acta. 85 (2012) 116-121.

DOI: 10.1016/j.electacta.2012.08.009

Google Scholar

[179] M. Sakar, R. Rubini, S. Tripathy, S. Balakumar, Effect of Gd dopant concentration on the defect engineering in ceria nanostructures, Mater. Res. Bull. 47 (2012) 4340-4346.

DOI: 10.1016/j.materresbull.2012.09.007

Google Scholar

[180] T.S. Zhang, J. Ma, H. Cheng, S.H. Chan, Ionic conductivity of high-purity Gd-doped ceria solid solutions, Mater. Res. Bull. 41 (2006) 563–568.

DOI: 10.1016/j.materresbull.2005.09.008

Google Scholar

[181] B.G. Pound, The characterization of doped CeO2 electrodes in solid oxide fuel cells, Solid State Ionics. 52 (1992) 183-188.

DOI: 10.1016/0167-2738(92)90104-w

Google Scholar

[182] V. Esposito, E. Traversa, Design of electroceramics for solid oxide fuel cells applications: Playing with ceria, J. Am. Ceram. Soc. 91 (2008) 1037-1051.

DOI: 10.1111/j.1551-2916.2008.02347.x

Google Scholar

[183] P. Datta, P. Majewski, F. Aldinger, Study of gadolinia dopd ceria solid electrolyte surface by XPS, Mater. Character. 60 (2009) 138-143.

DOI: 10.1016/j.matchar.2008.08.002

Google Scholar

[184] A. Overs, I. Riess, Properties of the Electrolyte Gadolinia doped ceria sintered from powder prepared by decomposition of mixed cerium gadolinium Ooxalate, J. Am. Ceram. Soc. 65 (1982) 606-609.

DOI: 10.1111/j.1151-2916.1982.tb09938.x

Google Scholar

[185] K. Higashi, K. Sonoda, H. Ono, S. Sameshima, Y. Hirata, Synthesis and sintering of rare-earth-doped ceria powder by the oxalate co-precipitation method, J. Mater. Res. 14 (1999) 957-967.

DOI: 10.1557/jmr.1999.0127

Google Scholar

[186] M.J. Godinho, R.F. Gonçalves , L.P. S Santos, J.A. Varela, E. Longo, E.R. Leite, Room temperature co-precipitation of nanocrystalline CeO2 and Ce0. 8Gd0. 2O1. 9−δ powder, Mater. Lett. 61 (2007) 1904–(1907).

DOI: 10.1016/j.matlet.2006.07.152

Google Scholar

[187] T.H. Hsieh, D.T. Ray, Y.P. Fu, Co-precipitation synthesis and AC conductivity behavior of gadolinium-doped ceria, Ceram. Int. 39 (2013) 7967-7973.

DOI: 10.1016/j.ceramint.2013.03.061

Google Scholar

[188] A.K. Baral, H.P. Dasari, B.K. Kim, J.H. Lee, Effect of sintering aid (CoO) on transport properties of nanocrystalline Gd doped ceria (GDC) materials prepared by co-precipitation method, J. Alloys. Compds. 575 (2013) 455-460.

DOI: 10.1016/j.jallcom.2013.05.191

Google Scholar

[189] W. Jung, H. Park, Y. Kang, D. Yoon, Lowering the sintering temperature of Gd-doped ceria by mechanochemical activation, Ceram. Int. 36 (2010) 371–374.

DOI: 10.1016/j.ceramint.2009.07.020

Google Scholar

[190] K. Yamashita, K.V. Ramanujachary, M. Greenblatt, Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics, Solid State Ionics. 81 (1995) 53-60.

DOI: 10.1016/0167-2738(95)99031-h

Google Scholar

[191] J. Prado-Gonjal, R. Schmidt, J. Espíndola-Canuto, P. Ramos-Alvarez, E. Morán, Increased ionic conductivity in microwave hydrothermally synthesized rare-earth doped ceria Ce1−xRExO2−(x/2), J. Power Sources. 209 (2012) 163-171.

DOI: 10.1016/j.jpowsour.2012.02.082

Google Scholar

[192] A.I.Y. Tok, L.H. Luo, F.Y.C. Boey, J.L. Woodhead, Consolidation and properties of Gd0. 1Ce0. 9O1. 95 nanoparticles for solid-oxide fuel cell electrolytes, J. Mater. Res. 21 (2006) 119-124.

DOI: 10.1557/jmr.2006.0024

Google Scholar

[193] Y. Wang, T. Mori, J.G. Li, T. Ikegami, Low-temperature synthesis of praseodymium-doped ceria nanopowders, J. Am. Ceram. Soc. 85 (12) (2002) 3105–3107.

DOI: 10.1111/j.1151-2916.2002.tb00591.x

Google Scholar

[194] Y. C. Zhou, R. J. Phillips, J. A. Switzer. Electrochemical synthesis and sintering of nanocrystalline Cerium (IV) oxide powders, J. Am. Ceram. Soc. 78 (1995) 981–985.

DOI: 10.1111/j.1151-2916.1995.tb08425.x

Google Scholar

[195] J.G. Li, T. Ikegami, Y. Wang, T. Mori, Reactive ceria nanopowders via carbonate precipitation, J. Am. Ceram. Soc. 85 (2002) 2376-2378.

DOI: 10.1111/j.1151-2916.2002.tb00465.x

Google Scholar

[196] A. I. Y. Tok, L. H. Luo, F. Y. C. Boey, Carbonate Co-precipitation of Gd2O3-doped CeO2 solid solution nano-particles, Mater. Sci. Engg A. 383 (2004) 229-234.

DOI: 10.1016/j.msea.2004.05.071

Google Scholar

[197] M. Akinc, D. Sordelet, Preparation of yttrium, lanthanum, cerium, and neodymium basic carbonate particles by homogeneous precipitation, Adv. Ceram. Mater. 2 (1987) 232-238.

DOI: 10.1111/j.1551-2916.1987.tb00087.x

Google Scholar

[198] Y. C. Zhou, M. N. Rahaman. Sintering of doped, nanocrystalline CeO2 powders prepared under hydrothermal conditions, J. Mater. Sci. Technol. 11( 1995) 429-434.

Google Scholar

[199] Y. C. Zhou, M. N. Rahaman. Hydrothermal synthesis and sintering of ultrafine CeO2 powders. J. Mater. Res. 8 (1993) 1680-1686.

DOI: 10.1557/jmr.1993.1680

Google Scholar

[200] S. Kato, T. Iga, S. Hatano, Y. Isawa, Synthesis of NH4- AlO(OH)HCO3, Yogyo-Kyokai-Shi 84 (1976) 215–220.

Google Scholar

[201] Y. Wang, T. Mori, J. Li, Y. Yajima, Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics, Sci. Technol. Adv. Mater. 4 (2003) 229–238.

Google Scholar

[202] M. J. Readey, R. R. Lee, J. W. Halloran, A.H. Heuer, Processing and sintering of ultrafine MgO-ZrO2 and (MgO, Y2O3)-ZrO2 powders, J. Amer. Ceram. Soc. 73 (1990) 1499-1503.

DOI: 10.1111/j.1151-2916.1990.tb09786.x

Google Scholar

[203] G. B. Jung, T. J. Huang, M. H. Huang, C. L. Chang, Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method, J. Mater. Sci. 36 (2001) 5839-5844.

Google Scholar

[204] W. Huang, P. Shunk, M. Greenblatt, Properties of sol-gel prepared Ce1−xSmxO2−x/2 solid electrolytes, Solid State Ionics. 100 (1997) 23-27.

DOI: 10.1016/s0167-2738(97)00309-3

Google Scholar

[205] R.O. Fuentes, R.T. Baker, Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes, Int. J. Hydrogen Energy. 33 (2008) 3480-3484.

DOI: 10.1016/j.ijhydene.2007.10.026

Google Scholar

[206] D. Wattanasiriwech, S. Wattanasiriwech, Effects of Fuel Contents and Surface Modification on the Sol-gel Combustion Ce0. 9 Gd0. 1O1. 95 Nanopowder, Energy Procedia. 34 (2013) 524-533.

DOI: 10.1016/j.egypro.2013.06.781

Google Scholar

[207] C. C Chen, M. M. Narsallah, H. U. Anderson, Synthesis and Characterization of  (CeO2) 0. 8 (SmO1. 5) 0. 2 Thin Films from Polymeric Precursors, J. Electrochem. Soc. 140 (1993) 3555-3560.

DOI: 10.1149/1.2221125

Google Scholar

[208] E. Matijevic, W. P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds : I. Gadolinium, europium, terbium, samarium, and cerium(III), J. Colloid Interface Sci. 118 (1987) 506-523.

DOI: 10.1016/0021-9797(87)90486-3

Google Scholar

[209] J. Van Herle, T. Horita, T. Kawada, N Skai, H. Yokokawa, M. Dokiya, Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte, Solid State Ionics. 86-88 (1996) 1255-1258.

DOI: 10.1016/0167-2738(96)00297-4

Google Scholar

[210] T. S. Zhang, J. Ma, L. H. Luo, S. H. Chan, Preparation and properties of dense Ce0. 9Gd0. 1O2−δ ceramics for use as electrolytes in IT-SOFCs, J. Alloys Compds. 422 (2006) 46-52.

DOI: 10.1016/j.jallcom.2005.11.049

Google Scholar

[211] A. Fakhrabadi, R.V. Mangalaraja, F. A. Sanhueza, R. E. Avila, S. Ananthakumar, S.H. Chan, Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting, J. Power Sources. 218 (2012) 307-312.

DOI: 10.1016/j.jpowsour.2012.07.005

Google Scholar

[212] Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Prog. Mater. Sci. 57 (2012) 804–874.

DOI: 10.1016/j.pmatsci.2011.08.002

Google Scholar

[213] M.G. Chourashiya, J.Y. Patil, S.H. Pawar, L.D. Jadhav, Studies on structural, morphological and electrical properties of Ce1−xGdxO2−(x/2), Mater. Chem. Phys. 109 (2008) 39-44.

DOI: 10.1016/j.matchemphys.2007.10.028

Google Scholar

[214] Y. Hirata, N. Matsunaga, M. Murao, Synthesis of Gadolinium-Doped Ceria Powders by Electrolysis of Aqueous Solutions, J. Am. Ceram. Soc. 92(2009) S11-S15.

DOI: 10.1111/j.1551-2916.2008.02645.x

Google Scholar

[215] L.D. Jadhav, M.G. Chourashiya, K.M. Subhedar, A.K. Tyagi, J.Y. Patil, Synthesis of nanocrystalline Gd doped ceria by combustion technique, J. Alloys and Compds. 470 (2009) 383-386.

DOI: 10.1016/j.jallcom.2008.02.077

Google Scholar

[216] M. Jamshidijam, R.V. Mangalaraja, A. Akbari-Fakhrabadi, S. Ananthakumar, S.H. Chan, Effect of rare earth dopants on structural characteristics of nanoceria synthesized by combustion method, Powder Technol. 253 (2014) 304-310.

DOI: 10.1016/j.powtec.2013.10.032

Google Scholar

[217] W. Chen, F. Li, J. Yu, Combustion synthesis and characterization of nanocrystalline CeO2- based powders via ethylene glycol-nitrate process, Mater. Lett. 60 (2006) 57–62.

DOI: 10.1016/j.matlet.2005.07.088

Google Scholar

[218] F. F. Muñoz, A. G. Leyva, R. T. Baker, R. O. Fuentes, Effect of preparation method on the properties of nanostructured gadolinia-doped ceria materials for IT-SOFCs, Int. J. Hydrogen Energy. 37 (2012) 14854-14863.

DOI: 10.1016/j.ijhydene.2011.12.094

Google Scholar

[219] S. Burinskas, V. Adomonis, J. Dudonis, G. Laukaitis, V. Minialga, D. Milčius, Synthesis and characterization of GDC solid electrolytes obtained by solid state sintering of multilayer thin films, Solid State Ionics. 184 (2011) 14-18.

DOI: 10.1016/j.ssi.2010.09.033

Google Scholar

[220] M.A. Faruk Öksüzömer, G. Dönmez, V. Sariboğa, T. G. Altinçekiç, Microstructure and ionic conductivity properties of gadolinia doped ceria (GdxCe1−xO2−x/2) electrolytes for intermediate temperature SOFCs prepared by the polyol method, Ceram. Int. 39 (2013).

DOI: 10.1016/j.ceramint.2013.02.069

Google Scholar

[221] A. Arabaci, M. Faruk Öksüzömer, Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications, Ceram. Int. 38 (2012) 6509-6515.

DOI: 10.1016/j.ceramint.2012.05.030

Google Scholar

[222] A. Arabaci, Effect of Sm and Gd dopants on structural characteristics and ionic conductivity of ceria, Ceram. Int. 41 (2015) 5836-5842.

DOI: 10.1016/j.ceramint.2015.01.013

Google Scholar

[223] K.C. Anjaneya, J. Manjanna , G.P. Nayaka, V.M. Ashwin Kumar, G. Govindaraj, K.N. Ganesha, Citrate-complexation synthesized Ce0. 85Gd0. 15O2−δ (GDC15) as solid electrolyte for intermediate temperature SOFC, Physica B: Cond. Matter. 447 (2014).

DOI: 10.1016/j.physb.2014.04.056

Google Scholar

[224] C. Goulart, E. Djurado, Synthesis and sintering of Gd-doped CeO2 nanopowders prepared by ultrasonic spray pyrolysis, J. Euro. Ceram. Soc. 33 (2013) 769-778.

DOI: 10.1016/j.jeurceramsoc.2012.09.029

Google Scholar

[225] A. Gondolini, E. Mercadelli, A. Sanson, S. Albonetti, L. Doubova, S. Boldrini, Microwave-assisted synthesis of gadolinia-doped ceria powders for solid oxide fuel cells, Ceram. Int. 37 (2011) 1423-1426.

DOI: 10.1016/j.ceramint.2011.01.010

Google Scholar

[226] E. Chinarro, J.R. Jurado, M.T. Colomer, Synthesis of ceria-based electrolyte nanometric powders by urea-combustion technique, J. Euro. Ceram. Soc. 27 (2007) 3619-3623.

DOI: 10.1016/j.jeurceramsoc.2007.02.007

Google Scholar

[227] R.I. Walton, Solvothermal synthesis of cerium oxides, Prog. Crystl. Growth. Character. Mater. 57 (2011) 93-108.

Google Scholar

[228] C. Kleinlogel, L. J. Gauckler, Sintering of nanocrystalline CeO2 Ceramics, Adv. Mater. 13-14 (2001) 1081-1085.

DOI: 10.1002/1521-4095(200107)13:14<1081::aid-adma1081>3.0.co;2-d

Google Scholar

[229] C. Kleinlogel, L. J. Gauckler, Sintering and properties of nanosized ceria solid solutions, Solid State Ionics. 135 (2000) 567-573.

DOI: 10.1016/s0167-2738(00)00437-9

Google Scholar

[230] T. S. Zhang, J. Ma, Y.J. Leng, S. H. Chan, P. Hing, J. A. Kilner, Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0. 8Gd0. 2O2−δ ceramics, Solid State Ionics. 168 (2004) 187-195.

DOI: 10.1016/j.ssi.2004.02.015

Google Scholar

[231] T. S. Zhang, J. Ma, Y.J. Leng, Z. M. He, Sintering, microstructure and grain growth of Fe-doped Ce0. 9Gd0. 1O2−δ ceramics derived from oxalate coprecipitation, J. Crystal Growth. 274 (2005) 603-611.

DOI: 10.1016/j.jcrysgro.2004.10.011

Google Scholar

[232] G.S. Lewis, A. Atkinson, B.C.H. Steele, J. Drennan, Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria, Solid State Ionics. 152– 153 (2002) 567– 573.

DOI: 10.1016/s0167-2738(02)00372-7

Google Scholar

[233] D. P. Fagg, V. V. Kharton, J. R. Frade, P-type electronic transport in Ce0. 80Gd0. 2O2-δ: The effect of transition metal oxide sintering aids, J. Electroceram. 9 (2002) 199-207.

Google Scholar

[234] J.F. Baumard, C. Gault, A. Argoitia, Sintered ceria: a new dense and fine grained ceramic material, J. Less Com. Met. 127 (1987) 125-130.

DOI: 10.1016/0022-5088(87)90368-7

Google Scholar

[235] C. G.M. Lima, T.H. Santos, J. P.F. Grilo, R. P.S. Dutra, R. M. Nascimento, S. Rajesh, F. C. Fonseca, D. A. Macedo, Synthesis and properties of CuO-doped Ce0. 9Gd0. 1O2−δ electrolytes for SOFCs, Ceram. Int. 41 (2015) 6161-4168.

DOI: 10.1016/j.ceramint.2014.12.093

Google Scholar

[236] Z. Tianshu, P. Hing, H. Huang, J. Kilner, Sintering and densification behaviour of Mn-doped CeO2, Mater. Sci. Engg B: Solid State Mater. Adv. Technol. 83(2001) 235–241.

DOI: 10.1016/s0921-5107(01)00534-7

Google Scholar

[237] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, The effect of Fe doping on the sintering behavior of commercial CeO2 powders, J. Mater. Process. Technol. 113 (2001) 463–468.

DOI: 10.1016/s0924-0136(01)00600-8

Google Scholar

[238] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Sintering study on commercial CeO2 powder with small amount of MnO2 doping, Mater. Lett. 57 (2002) 507–512.

DOI: 10.1016/s0167-577x(02)00820-0

Google Scholar

[239] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Early stage sintering mechanisms of Fe-doped CeO2, J. Mater. Sci. 37 (2002) 997-1003.

Google Scholar

[240] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Sintering of Co-doped CeO2 powder, J. Mater. Sci. Lett. 21 (2002) 75-77.

Google Scholar

[241] D. P. Fagg, J. C. C. Abrantes, D. Perez-Coll, P. Nunez, V. V. Kharton, J. R. Frade, The effect of cobalt oxide sintering aid on electronic transport in Ce0. 80Gd0. 2O2−δ electrolyte, Electrochim. Acta. 48 (2003) 1023–1029.

DOI: 10.1016/s0013-4686(02)00816-2

Google Scholar

[242] T. S. Zhang, L. B. Kong, Z. Q. Zeng, H. T. Huang, P. Hing, Z. T. Xia, J. Kilner, Sintering behavior and ionic conductivity of Ce0. 8Gd0. 2O1. 9 with a small amount of MnO2 doping, J. Solid State Electrochem. 7 (2003) 348-354.

DOI: 10.1007/s10008-002-0337-9

Google Scholar

[243] D. Perez-Coll, P. Nunez, D. Marrero-Lopez, J. C. C. Abrantes, J. R. Frade, Effects of sintering additives on the mixed transport properties of ceria-based materials under reducing conditions, J. Solid State Electrochem. 8 (2004) 644–649.

DOI: 10.1007/s10008-004-0505-1

Google Scholar

[244] T. S. Zhang, J. Ma, S. H. Chan, J. A. Kilner, Improvements in sintering behavior and grain-boundary conductivity of ceria-based electrolytes by a small addition of Fe2O3, J. Electrochem. Soc. 151 (2004): J84–J90.

DOI: 10.1149/1.1795257

Google Scholar

[245] T. S. Zhang, J. Ma, L. B. Kong, S. H. Chan, P. Hing, J. A. Kilner, Iron oxide as an effective sintering aid and a grain boundary scavenger for ceria based electrolytes, Solid State Ionics. 167(2004) 203-207.

DOI: 10.1016/j.ssi.2004.01.006

Google Scholar

[246] Y. C. Dong, S. Hampshire, J. E. Zhou, G. Y. Meng, Synthesis and sintering of Gd-doped CeO2 electrolytes with and without 1 at. CuO dopping for solid oxide fuel cell applications, Int. J. Hydrogen Energy. 36 (2011) 5054-5066.

DOI: 10.1016/j.ijhydene.2011.01.030

Google Scholar

[247] P. Mangifesta, A. Sanson, E. Roncari, Sintering mechanism of CuO-doped Ce0. 8Gd0. 2O2−δ Ceramics, ECS Transactions. 7 (2007) 2269–2276.

DOI: 10.1149/1.2729344

Google Scholar

[248] M. F. Han, S. Zhou, Z. Liu, Z. Lei, Z. C. Kang, Fabrication, sintering and electrical properties of cobalt oxide doped Gd0. 1Ce0. 9O2−δ, Solid State Ionics. 192 (2011) 181-184.

DOI: 10.1016/j.ssi.2010.06.019

Google Scholar

[249] E. Jud, L. J. Gauckler. Sintering behavior of cobalt oxide doped ceria powders of different particle sizes, J. Electroceram. 14 (2005) 247-253.

DOI: 10.1007/s10832-005-0964-5

Google Scholar

[250] E. Jud, C. B. Huwiler, L. J. Gauckler, Grain growth of micronsized grains in undoped and cobalt oxide doped ceria solid solutions, J. Ceram. Soc. Japan, 114 (2006) 963-969.

DOI: 10.2109/jcersj.114.963

Google Scholar

[251] J. Lee, K. Choi, B. Ryu, B. Shin, I. Kim, Effects of alumina additions on sintering behavior of gadolinia-doped ceria, Ceram. Int. 30 (2004) 807-812.

DOI: 10.1016/j.ceramint.2003.07.018

Google Scholar

[252] B. Li, X. Wei, W. Pan, Electrical properties of Mg-doped Gd0. 1Ce0. 9O1. 95 under different sintering conditions, J. Power Sources. 183 (2008) 498-505.

DOI: 10.1016/j.jpowsour.2008.05.050

Google Scholar

[253] V. Gil, J. Tartaj, C. Moure, P. Duran, Effect of Bi2O3 addition on the sintering and microstructural development of gadolinia-doped ceria ceramics, J. Euro. Ceram. Soc. 27 (2007) 801-805.

DOI: 10.1016/j.jeurceramsoc.2006.04.011

Google Scholar

[254] V. Gil, J. Tartaj, C. Moure, P. Duran, Sintering, microstructural development, and electrical properties of gadolinia-doped ceria electrolyte with bismuth oxide as a sintering aid, J. Euro. Ceram. Soc. 26 (2006) 3161-3171.

DOI: 10.1016/j.jeurceramsoc.2005.09.068

Google Scholar

[255] V. Gil, C. Moure, P. Duran, J. Tartaj, Low-temperature densification and grain growth of Bi2O3-doped-ceria gadolinia ceramics, Solid State Ionics. 178 (2007) 359-365.

DOI: 10.1016/j.ssi.2007.02.002

Google Scholar

[256] J. D. Nicholas, L. C. De Jonghe, Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide, Solid State Ionics. 178 (2007) 1187-1194.

DOI: 10.1016/j.ssi.2007.05.019

Google Scholar

[257] P. Cho, S. B. Lee, D. Kim, J. Lee, D. Kim, H. Park, Improvement of grain-boundary conduction in gadolinia-doped ceria by the addition of CaO, Electrochem. Solid State Lett. 9 (2006) 399-402.

DOI: 10.1149/1.2214235

Google Scholar

[258] J. Lee, K. Choi, B. Ryu, B. Shin, I. Kim, Effects of gallia additions on sintering behaviour of gadolinia-doped ceria, Mater. Res. Bull. 39 (2004) 2025-(2033).

DOI: 10.1016/j.materresbull.2004.07.022

Google Scholar

[259] H. Yoshida, K. Miura, J. Fujita, and T. Inagaki, Effect of gallia addition on the sintering behavior of samaria-doped ceria, J. Am. Ceram. Soc. 82 (1999) 219-221.

DOI: 10.1111/j.1151-2916.1999.tb01747.x

Google Scholar

[260] T. Zhu, Y. Lin, Z. Yang, D. Su, S. Ma, M. Han, F. Chen, Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells, J. Power Sources. 261 (2014) 255-263.

DOI: 10.1016/j.jpowsour.2014.03.010

Google Scholar

[261] M. Han, Z. Liu, S. Zhou, L. Yu, Influence of Lithium Oxide Addition on the sintering behavior and electrical conductivity of gadolinia doped Ceria, J. Mater. Sci. Technol. 27 (2011) 460-464.

DOI: 10.1016/s1005-0302(11)60091-1

Google Scholar

[262] L. A. Villas-Boas, F. M.L. Figueiredo, D. P.F. de Souza, F. M.B. Marques, Zn as sintering aid for ceria-based electrolytes, Solid State Ionics. 262 (2014) 522-525.

DOI: 10.1016/j.ssi.2013.11.002

Google Scholar

[263] L. Ge, R. Li, S. He, H. Chen, L. Guo, Enhanced grain-boundary conduction in polycrystalline Ce0. 8Gd0. 2O1. 9 by zinc oxide doping: Scavenging of resistive impurities, J. Power Sources. 230 (2013) 161-168.

DOI: 10.1016/j.jpowsour.2012.12.084

Google Scholar

[264] L. Ge, R. Li, S. He, H. Chen, L. Guo, Effect of titania concentration on the grain boundary conductivity of Ce0. 8Gd0. 2O1. 9 electrolyte, Int. J. Hydrogen Energy. 21 (2012) 16123-16129.

DOI: 10.1016/j.ijhydene.2012.08.031

Google Scholar

[265] T. Guo, L. Zhang, X. Song, X. Dong, M. M. Shirolkar, M. Wang, M. Li, H. Wang, Influences of Gd2Ti2O7 sintering aid on the densification, ionic conductivity and thermal expansion of Gd0. 1Ce0. 9O1. 95 electrolyte for solid oxide fuel cells, J. Power Sources, 262 (2014).

DOI: 10.1016/j.jpowsour.2014.03.077

Google Scholar

[266] J. D. Nicholas, Low Temperature constrained sintering of cerium gadolinium oxide films for solid oxide fuel cell applications, PhD thesis, University of California, Berkeley, (2007).

DOI: 10.2172/926303

Google Scholar

[267] T. Ivas, Cerium-gadolinium-cobalt oxide: Phase equilibria and defect chemistry in bulk and grain boundaries, PhD Thesis, ETH Zurich, (2013).

Google Scholar

[268] P. Duran, C. Moure, J. R. Jurado. Sintering and microstructural development of ceria-gadolinia dispersed powders, J. Mater. Sci. 29 (1994) 1940-(1948).

DOI: 10.1007/bf00351318

Google Scholar

[269] J. G. Li, Y. R. Wang, T. Ikegami, T. Mori, T. Ishigaki, Reactive 10 mol% RE2O3 (RE = Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics, Mater. Sci. Eng. B: 121 (2005) 54-59.

DOI: 10.1016/j.mseb.2005.03.001

Google Scholar

[270] A. Tschöpe, E. Sommer, R. Birringer, Grain size-dependent electrical conductivity of polycrystalline cerium oxide I. Experiments, Solid State Ionics. 139 (2001) 255-265.

DOI: 10.1016/s0167-2738(01)00678-6

Google Scholar

[271] Z. J. Shen, H. Peng, J. Liu, M. Nygren, Conversion from nano- to micron-sized structures: experimental observations, J. Eur. Ceram. Soc. 24 (2004) 3447-3452.

DOI: 10.1016/j.jeurceramsoc.2003.10.033

Google Scholar

[272] U. Anselmi-Tamburini, J. E. Garay, Z. A. Munir, Fast low temperature consolidation of bulk nanometric ceramic materials, Scripta Mater. 54 (2006) 823-828.

DOI: 10.1016/j.scriptamat.2005.11.015

Google Scholar

[273] S. L. Hwang, I. W. Chen, Grain-size control of tetragonal zirconia polycrystals using the space-charge concept, J. Am. Ceram. Soc. 73 (1990) 3269-3277.

DOI: 10.1111/j.1151-2916.1990.tb06449.x

Google Scholar

[274] J. Markmann, A. Tschöpe, R. Birringer, Low temperature processing of dense nanocrystalline yttrium-doped cerium oxide ceramics, Acta Mater. 50 (2002) 1433-1440.

DOI: 10.1016/s1359-6454(01)00448-7

Google Scholar

[275] Y. C. Zhou, M. N. Rahaman, Effect of redox reaction on the sintering behavior of cerium oxide, Acta Mater. 45 (1997) 3635-3639.

DOI: 10.1016/s1359-6454(97)00052-9

Google Scholar

[276] I. W. Chen, X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature. 404 (2000) 168-171.

DOI: 10.1038/35004548

Google Scholar

[277] W. J. Bowman, J. Zhu, R. Sharma, P. A. Crozier, Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria, Solid State Ionics. 272 (2015) 9-17.

DOI: 10.1016/j.ssi.2014.12.006

Google Scholar