p.1
p.50
p.76
p.106
p.116
p.199
p.237
Doped Ceria Based Solid Oxide Fuel Cell Electrolytes and their Sintering Aspects: An Overview
Abstract:
Depletion of fossil fuel at an alarming rate is a major concern of humankind. Consequently, researchers all over the world are putting a concerted effort for finding alternative and renewable energy. Solid oxide fuel cell (SOFC) is one such system. SOFCs are electrochemical devices that have several advantages over conventional power generation systems like high efficiency of power generation, low emission of green house gases and the fuel flexibility. The major research focus of recent times is to reduce the operating temperature of SOFC in the range of 500 to 700 °C so as to render it commercially viable. This reduction in temperature is largely dependent on finding an electrolyte material with adequate oxygen ion conductivity at the intended operating temperature. One much material is Gadolinia doped Ceria (CGO) that shows very good oxygen ion conductivity at the intended operation temperature. The aim of this overview is to highlight the contribution that materials chemistry has made to the development of CGO as an electrolyte.
Info:
Periodical:
Pages:
199-236
Citation:
Online since:
January 2016
Authors:
Keywords:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] K. Saidi, S. Hammami, The impact of CO2 emissions and economic growth on energy consumption in 58 countries, Energy Reports, 1 (2015) 62-70.
[2] T.A. Adams, J. Nease, D. Tucker, P.I. Barton, Energy conversion with solid oxide fuel cell systems: A review of concepts of outlooks for the short and long term, Ind. Eng. Chem. Res. 52 (2013) 3089-3111.
DOI: 10.1021/ie300996r
[3] S.P.S. Badwal, S. Giddey, C. Munnings, A. Kulkarni, Review of progress in high Temperature solid oxide fuel cells, J. Aust. Ceram. Soc. 50 (2014) 23-37.
[4] K.V. Kordesch, G.R. Simader, Environmental impact of fuel cell Technology, Chem. Rev. 95 (1995) 191-207.
DOI: 10.1021/cr00033a007
[5] M.L. Faro, D.L. Rosa, V. Antonucci, A.S. Arico, Intermediate temperature solid oxide fuel cell electrolytes, J. Ind. Inst. Sci. 89 (2009) 363-380.
[6] A.B. Satmbouli, E. Traversa, Fuell cells, an alternative to standard sources of energy, Renew. Sust. Energy Rev. 6 (2002) 297-306.
[7] A.B. Satmbouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy, Renew. Sust. Energy Rev. 6 (2002) 433-455.
[8] A.M. Omer, Energy, environment and sustainable development, Renew. Sustain. Energy Rev. 12 (2008) 2265–2300.
[9] L. Malavasi, C. A. J. Fisher M. Saiful Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features, Chem. Soc. Rev. 39 (2010) 4370-4387.
DOI: 10.1039/b915141a
[10] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta. 45 (2000) 2423-2435.
[11] M. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y. Choi, Rational SOFC material design: new advances and tools, Mater. Today. 14 (2011) 534-546.
[12] G.J.K. Acres, Recent advances in fuel cell technology and its applications, J. Power Sources. 100 (2001) 60–66.
[13] S.P.S. Badwal, Stability of solid oxide fuel cell components, Solid State Ionics. 143 (2001) 39- 46.
[14] M. Belmonte, Advanced ceramic materials for high temperature applications, Adv. Eng. Mater. 8 (2006) 693-703.
[15] M. Dokiya, SOFC system and technology, Solid State Ionics. 152– 153 (2002) 383-392.
[16] V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics. 174 (2004) 135-149.
[17] J.A. Kilner, Fast oxygen transport in acceptor doped oxides, Solid State Ionics. 129 (2000) 13-23.
[18] N.Q. Minh, Ceramic fuel cells, J. Am. Ceram. Soc. 76 (1993) 563-588.
[19] J. B. Goodenough, Oxide-ion conductors by design, Nature. 404 (2000) 821-823.
DOI: 10.1038/35009177
[20] J. B. Goodenough, Ceramic solid electrolytes, Solid State Ionics. 94 (1997) 17-25.
[21] S. Hui, J. Roller, S. Yick, X. Zhang, C. Dec`es-Petit, Y. Xie, R. Maric, D. Ghosh, A brief review of the ionic conductivity enhancement for selected oxide electrolytes, J. Power Sources. 172 (2007) 493-502.
[22] N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells, Annu. Rev. Mater. Res. 33 (2003) 183-213.
[23] B.C.H. Steele, Oxygen transport and exchange in oxide ceramics, J. Power Sources. 49 (1994) 1-14.
[24] B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature. 414 (2001) 345-352.
DOI: 10.1038/35104620
[25] B.C.H. Steele, Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness? Solid State Ionics. 134 (2000) 3-20.
[26] E. Ivers-Tiffee, A. Weber, D. Herbstritt, Materials and technologies for SOFC-components, J. Euro. Ceram. Soc. 21 (2001) 1805-1811.
[27] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, Recent developments in solid oxide fuel cell materials, 1 (2001) 117-131.
DOI: 10.1002/1615-6854(200107)1:2<117::aid-fuce117>3.0.co;2-y
[28] H. Yokokawa, Understanding materials compatibility, Annu. Rev. Mater. Res. 33 (2003) 581-610.
[29] M.C. Williams, Solid oxide fuel cells: Fundamentals to systems, Fuel Cells. 7 (2007) 78-85.
[30] R.A. George, Status of tubular SOFC field unit demonstrations, J. Power Sources 86 (2000) 134-139.
[31] A. Weber, E. Ivers-Tiffe´e, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, J. Power Sources. 127 (2004) 273-283.
[32] J.V. Mierlo, G. Maggetto, Fuel Cell or Battery: Electric Cars are the Future, Fuell Cells. 7 (2007) 165-173.
[33] S.M. Haile, Fuel cell materials and components, Acta Mat. 51 (2003) 5981-6000.
[34] J.P.P. Huijsmans, F.P. F ven Berkel, G.M. Christie, Intermediate temperature SOFC- A promise for the 21st century, J. Power Sources. 71 (1998) 107-110.
[35] F. Panik, Fuel cells for vehicle applications in cars- bringing the future closer, J. Power Sources. 7 (1998) 36-38.
[36] S McCahey, J.T. McMullan and B.C. Williams, Technical and economic considerations of solid oxide fuel cell systems, Dev. Chem. Eng. Mineral Process. 5 (1997) 221-234.
[37] J. Van Mierlo, G. Maggetto, Ph. Lataire, Which energy source for road transport in the future? A comparison of battery, hybrid and fuel cell vehicles, Energy Conversion. Management. 47 (2006) 2748-2760.
[38] C. Xia, Y. Lang, G. Meng, Recent advances to the development of low temperature solid oxide fuel cell, Fuel cells. 4 (2004) 41-47.
[39] R.M. Ormerod, Solid oxide fuel cells, Chem. Soc. Rev. 32 (2003) 17–28.
[40] V. Kozhukharov, N. Brashkova, M. Ivanova, J. Carada, M. Machkova, Ceramic materials for SOFCs: Current status, Bol. Soc. Esp. Cerám. Vidrio, 41 (2002) 471-480.
[41] A.S. Nesaraj, Recent development in solid oxide fuel cell technology, J. Sci. Ind. Res. 69 (2010) 169-176.
[42] N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, S. Assabumrungrat, Reviews on solid oxide fuel cell technology, Eng. J. 13 (2009) 65-83.
[43] F.M.L. Figueiredo, F.M.B. Marques, Electrolytes for solid oxide fuel cell, WIRES Energy Environ. 2 (2013) 52-72.
[44] W.R. Grove, On voltaic series and the combination of gases by platinium, Phil. Mag. 14 (1839) 127-130.
[45] H.M. Smith, The Nersnst Lamp, Science. 8 (1898) 689-690.
[46] H.C. Copper, The Nernst light, Science. 8 (1898) 710.
[47] H. H. Mobius, On the history of solid electrolyte fuel cells, J. Solid State Electrochem. 1 (1997) 2-16.
[48] A.J. Jacobson, Materials for solid oxide fuel cell, Chem. Mater. 22 (2010) 660-674.
[49] P. Datta, Doped LaGaO3 based solid oxide fuel cell materials and their sintering aspects: an overview, Mater. Sci. Forum. 624 (2009) 109-137.
[50] A. Lashtabeg, S.J. Skinner, Solid oxide fuel cells—a challenge for materials chemists? J. Mater. Chem. 16 (2006) 3161-70.
DOI: 10.1039/b603620a
[51] J. W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources. 162 (2006) 30-40.
[52] R.J. Gorte, Recent developments towards commercialization of solid oxide fuel cells, Am. Inst. Chem. Engg. 51 (2005) 2377-2381.
DOI: 10.1002/aic.10621
[53] B. Liu, Y. Zhang, Status and prospects of intermediate temperature solid oxide fuel cells, J. Univ. Sci. Technol. Beijing. 15 (2008) 84-90.
[54] P. Holtappels, U. Vogt, T. Graule, Ceramic materials for advanced solid oxide fuel cells, Adv. Eng. Mater. 7 (2005) 292-302.
[55] P. Singh, N.Q. Minh, Solid Oxide Fuel Cells: Technology Status, Int. J. Appl. Ceram. Technol. 1 (2004) 5-15.
[56] A. Tarancón, Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature, Energies 2(2009) 1130-1150.
DOI: 10.3390/en20401130
[57] L. Fan, C. Wang, M. Chen, B. Zhu, Recent development of ceria-based (nano) composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells, J. Power Sources. 234 (2013) 154-174.
[58] N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, The Netherlands, (1995).
[59] P. Huang, A. Petric, Superior Oxygen Ion Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium, J. Electrochem. Soc. 143 (1996) 1644-1648.
DOI: 10.1149/1.1836692
[60] B.C.H. Steele, Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500 °C, Solid State Ionics. 129 (2000) 95-110.
[61] M. Mogensen, N.M. Sammes, G.F. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics. 129 (2000) 63-94.
[62] S.P.S. Badwal, F.T. Ciacchi, Oxygen ion conducting electrolyte materials for solid oxide fuel cell, Ionics. 6 (2000) 1-21.
DOI: 10.1007/bf02375543
[63] J.A. Kilner, Fast anion transport in solids, Solid State Ionics. 8 (1983) 201-207.
[64] R.D. Shannon and C.T. Prewitt, Effective ionic radii in oxides and fluorides, Acta Cryst. B25 (1969) 925-946.
[65] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells, Solid State Ionics. 52 (1992) 165-172.
[66] D.J.M. Bevan, E. Summerville, Mixed rare earth oxides, in: K.A. Gschneidner, L. Eyring (Eds. ), Handbook on the Physics and Chemistry of Rare Earths, North Holland, Amsterdam, Vol 3, 1979, p.401−524.
[67] S. Anawar, Optimization of ionic conductivity in doped ceria using density functional theory and kinetic lattice monte cralo, PhD Thesis, Arizona State University, USA, (2011).
[68] S.P.S. Badwal, Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics. 52 (1992) 23-32.
[69] R.J. Stafford, S.J. Rothman, L.J. Routbort, Effect of dopant size on the ionic conductivity of cubic stabilised ZrO2, Solid State Ionics. 37 (1989) 67-72.
[70] D.U. Wang, D.S. Park, J. Griffith, A.S. Nowick, Oxygen-ion conductivity and defect interactions in yttria-doped ceria, Solid State Ionics. 2 (1981) 95-105.
[71] P.P. Dholabhai, J.B. Adams, P. Crozier, R. Sharma, A density functional study of defect migration in gadolinium doped ceria, Phys. Chem. Chem. Phys. 12 (2010) 7904-7910.
DOI: 10.1039/b924534k
[72] J. Faber, C. Geoffroy, A. Roux, A. Sylvestre and P. Abelard, A Systematic investigation of the dc electrical conductivity of rare-earth doped ceria, Appl. Physics A: Mater. Sci. Process. 49 (1989) 225-232.
DOI: 10.1007/bf00616848
[73] H. Yahiro, Y. Eguchi, K. Eguchi, H. Arai, Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure, J. Appl. Electrochem. 18 (1988) 527-531.
DOI: 10.1007/bf01022246
[74] R. Gerhardt-Anderson, A.S. Nowick, Ionic conductivity of CeO2 with trivalent dopants of different ionic radii, Solid State Ionics. 5 (1981) 547-550.
[75] V. Butler, C.R.A. Catlow, B.E.F. Fender, J.H. Harding, Dopant ion radius and ionic conductivity in cerium dioxide, Solid State Ionics. 8 (1983) 109-113.
[76] L. Minervini, M.O. Zacate and R.W. Grimes, Defect cluster formation in M2O3-doped CeO2, Solid State Ionics. 116 (1999) 339-349.
[77] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics. 83 (1996) 1-16.
[78] H. Yahiro, K. Eguchi, H. Arai, Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell, Solid State Ionics. 36 (1989) 71-75.
[79] D.L. Maricle, T.E. Swarr, S. Karavolis, Enhanced ceria-a low-temperature SOFC electrolyte, Solid State Ionics. 52 (1992) 173-182.
[80] S.P.S. Badwal, F.T. Ciacchi, J. Drennan, Investigation of the stability of ceria-gadolinia electrolytes in solid oxide fuel cell environments, Solid State Ionics. 121 (1999) 253-262.
[81] T. Inoue, T. Setoguchi, K. Eguchi, H. Arai, Study of a solid oxide fuel cell with a ceria-based solid electrolyte, Solid State Ionics. 35 (1989) 285-291.
[82] A. Tsoga, A. Naoumidis, D. Stover, Total electrical conductivity and defect structure of ZrO2–CeO2–Y2O3–Gd2O3 solid solutions, Solid State Ionics. 135 (2000) 403-409.
[83] B. C. H. Steele, Oxygen ion conductors, in: T. Takahashi (Ed), High Conductivity Solid Ionic Conductors, Recent Trends and Applications, World Scientific, Singapore, 1989, pp.402-446.
[84] M.A. Panhans, R.N. Bluementhal, A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide, Solid State Ionics. 60 (1993) 279-298.
[85] H. Yahiro, T. Ohuchi, K. Eguchi, H. Arai, Electrical properties and microstructure in the system ceria-alkaline earth oxide, J. Mater. Sci. 23 (1998) 1036-1041.
DOI: 10.1007/bf01154008
[86] H. Arai, T. Kunisaki, Y. Shimizu, T. Seiyama, Electrical properties of calcia-doped ceria with oxygen ion conduction, Solid State Ionics. 20 (1986) 241-248.
[87] R.T. Dirstine, R.N. Blumenthal, T.F. Kuech, Ionic conductivity of calcia, yttria, and rare earth‐doped eerium dioxide, J. Electrochem. Soc. 126 (1979) 264-269.
DOI: 10.1149/1.2129018
[88] J.A. Kilner, Defects and conductivity in ceria-based oxides, Chem. Lett. 37 (2008) 1012-1015.
DOI: 10.1246/cl.2008.1012
[89] J.A. Kilner, B.C.H. Steele, Mass transport in anion-deficient fluorite oxides, in: O.T. Sorensen (ed), Non-stoichiometric oxides, Academic Press, New York, 1981, pp.233-269.
[90] J.A. Kilner, C.D. Waters, The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides, Solid State Ionics. 6 (1982) 253-259.
[91] D.J. Kim, Ionic conductivities, and solubility limits in fluorite structure MO2 oxide [M = Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions, J. Am. Ceram. Soc. 72 (1989) 1415-1421.
[92] J.G. Allpress, H.J. Rossell, A microdomain description of defective fluorite-type phases Ca xM1-xO 2-x( M =Zr, Hf; x = 0. 1-0. 2), J. Solid State Chem. 15 (1975) 68-78.
[93] A. Nakamura, J.B. Wagner, Defect Structure, Ionic Conductivity and Diffusion in Calcia Stabilized Zirconia, J. Electrochem. Soc. 127 (1980) 2325-2333.
DOI: 10.1149/1.2129406
[94] V.N. Chebotin, V.A. Merzin, Ordering of defects, thermodynamic and transport properties of solid oxide electrolytes with fluorite structure, Physica Status Solidi A. 89 (1985) 199-211.
[95] K. Ando, Y. Oishi, Diffusion characteristics of actinide oxides, J. Nucl. Sci. Technol. 20 (1983) 973-982.
[96] H. Matzke, Fluorine self-diffusion in CaF2 and BaF2, J. Mater. Sci. 5 (1970) 831-836.
DOI: 10.1007/bf00574851
[97] M. Beniere, M. Chemla, Anion diffusion mechanism in strontium chloride single crystals, J. Phys. Chem. Solids. 40 (1979) 729-737.
[98] S. Wang, H. Inaba, H. Tagawa, M. Dokiya, T. Hashimoto, Nonstoichiometry of Ce0. 9Gd0. 1O3-x, Solid State Ionics. 107 (1998) 73-79.
[99] K. Ando, Y. Oishi, Y. Hidaka, Self-diffusion of oxygen in single crystal thorium oxide, J. Chem. Phys. 65 (1976) 2751-2755.
DOI: 10.1063/1.433419
[100] K.C. Kim, D.R. Olander, Oxygen diffusion in UO2-x, J. Nucl. Mater. 102 (1981) 192-199.
[101] J.W. Patterson, Conduction domains for solid electrolytes J. Electrochem. Soc. 118 (1971) 1033-1039.
[102] H.L. Tuller, A.S. Nowick, Doped ceria as a solid electrolyte, J. Electrochem. Soc. 122 (1975) 255-259.
DOI: 10.1149/1.2134190
[103] H.L. Tuller, Mixed ionic–electronic conduction in a number of fluorite and pyrochlore compounds, Solid State Ionics. 52 (1992) 135-146.
[104] T. Takahashi, T. Esaka, H. Iwahara, Conduction in Bi2O3-based oxide ion conductor under low oxygen pressure. II. Determination of the partial electronic conductivity, J. Appl. Electrochem. 7 (1977) 303-308.
DOI: 10.1007/bf01059170
[105] T. Kudo, H. Obayashi, Oxygen ion conduction of the fluorite-Type Ce1-x LnxO2-x/2 (Ln = Lanthanoid Element) J. Electrochem. Soc. 123 (1976) 415-419.
DOI: 10.1149/1.2134143
[106] I. Riess, D. Braunshtein, D.S. Tannhauser, Density and ionic conductivity of sintered (CeO2)0. 82 (GdO1. 5)0. 18 J. Am. Ceram. Soc. 64 (1981) 479-485.
[107] R. Gerhardt, A.S. Nowick, The grain boundary conductivity effect in ceria doped with trivalent cations. Part-I electrical behavior, J. Am. Ceram. Soc. 69 (1986) 641-646.
[108] S. Wang, T. Kobayashi, M. Dokiya, T. Hashimoto, Electrical and ionic conductivity of Gd‐doped Ceria, J. Electrochem. Soc. 147 (2000) 3606-3609.
DOI: 10.1149/1.1393946
[109] S. Wang, T. Kato, S. Nagata, T. Kaneko, N. Iwashita, T. Honda, M. Dokiya, Electrodes and performance analysis of a ceria electrolyte SOFC, Solid State Ionics, 152-153 (2002) 477-484.
[110] K. Huang, M. Feng, J.B. Goodenough, Synthesis and electrical properties of dense Ce0. 9Gd0. 1O1. 95 ceramics, J. Am. Ceram. Soc. 81 (1998) 357-362.
[111] S.B. Adler, J.A. Lane, B.C.H. Steele, Electrode kinetics of porous mixed‐conducting oxygen electrodes, J. Electrochem. Soc. 143 (1996) 3554-3564.
DOI: 10.1149/1.1837252
[112] H. L. Tuller, Ionic conduction in nanocrystalline materials, Solid State Ionics. 131 (2000) 143-157.
[113] C. Y. Tian, S. W. Chan, Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3, Solid State Ionics. 134 (2000) 89-102.
[114] D. Y. Wang, A. S. Nowick, The grain-boundary effect in doped ceria solid electrolytes, J. Solid State Chem. 35 (1980) 325-333.
[115] J. Maier, Ionic-conduction in-space charge regions, Prog. Solid State Chem. 23 (1995) 171-263.
[116] T. Suzuki, I. Kosacki, H. U. Anderson and P. Colomban, Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films, J. Am. Ceram. Soc. 84 (2001) 2007-(2014).
[117] Y. M. Chiang, E. B. Lavik and D. A. Blom, Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2, Nanostruct. Mater. 9 (1997) 633-642.
[118] Y. M. Chiang, E. B. Lavik, I. Kosacki, H. L. Tuller, J. Y. Ying, Defect and transport properties of nanocrystalline CeO2-x, Appl. Phys. Lett. 69 (1996) 185-187.
DOI: 10.1063/1.117366
[119] A. Tschöpe, S. Kilassonia, B. Zapp, R. Birringer, Grain-size dependent thermopower of polycrystalline cerium oxide, Solid State Ionics. 149 (2002) 261-273.
[120] G. M. Christie, F. P. F. van Berkel, Microstructure - Ionic conductivity relationships in ceria-gadolinia electrolytes, Solid State Ionics. 83 (1996) 17-27.
[121] X. D. Zhou, W. Huebner, I. Kosacki, H. U. Anderson, Microstructure and grain-boundary effect on electrical properties of gadolinium-doped ceria, J. Am. Ceram. Soc. 85 (2002) 1757-1762.
[122] T. Mori, J. Drennan, J. H. Lee, J. G. Li and T. Ikegami, Oxide ionic conductivity and microstructures of Sm- or La-doped CeO2-based systems, Solid State Ionics, 154 (2002) 461-466.
[123] F. Y. Wang, B. Z. Wan and S. F. Cheng, Study on Gd3+ and Sm3+ codoped ceria-based electrolytes, J. Solid State Electrochem. 9 (2005) 168-173.
[124] T. Mori, T. Kobayashi, Y. Wang, J. Drennan, T. Nishimura, J. G. Li, H. Kobayashi, Synthesis and characterization of nano-hetero-structured Dy doped CeO2 solid electrolytes using a combination of spark plasma sintering and conventional sintering, J. Am. Ceram. Soc. 88 (2005).
[125] T. Mori, Y. R. Wang, J. Drennan, G. Auchterlonie, J. G. Li and T. Ikegami, Influence of particle morphology on nanostructural feature and conducting property in Sm-doped CeO2 sintered body, Solid State Ionics. 175 (2004) 641-649.
[126] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Ionic conductivity in the CeO2-Gd2O3 system (0. 05 ≤ Gd/Ce ≤ 0. 4) prepared by oxalate coprecipitation, Solid State Ionics. 148 (2002) 567-573.
[127] S. W. Zha, C. R. Xia and G. Y. Meng, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, J. Power Sources. 115 (2003) 44-48.
[128] I. Kosacki, V. Petrovsky, H. U. Anderson, P. Colomban, Raman spectroscopy of nanocrystalline ceria and zirconia thin films, J. Am. Ceram. Soc. 85 (2002) 2646-2650.
[129] T. Suzuki, I. Kosacki and H. U. Anderson, Defect and mixed conductivity in nanocrystalline doped cerium oxide, J. Am. Ceram. Soc. 85 (2002) 1492-1498.
[130] A. Varez, E. Garcia-Gonzalez, J. Sanz Cation miscibility in CeO2–ZrO2 oxides with fluorite structure. A combined TEM, SAED and XRD Rietveld analysis, J. Mater. Chem. 16 (2006) 4249-4256.
DOI: 10.1039/b607778a
[131] Z. Heiba, H. Okuyucu, Y. S. Hascicek, X-ray structure determination of the rare earth oxides (Er1-uGdu)2O3 applying the Rietveld method, J. Appl. Cryst. 35 (2002) 571-576.
[132] H.L. Tuller, A.S. Nowick, Small polaron electron transport in reduced CeO2 single crystals, J. Phys. Chem. Solids. 38 (1977) 859-867.
[133] Y. Takasu, T. Sugino, Y. Matsuda, Electrical conductivity of praseodymia doped ceria. J. Applied Electrochem. 14 (1984) 79-81.
DOI: 10.1007/bf00611261
[134] M. Nauer, C. Ftikos, B.C.H. Steele, An Evaluation of Ce-Pr Oxides and Ce-Pr-Nb Oxides Mixed Conductors for Cathodes of Solid Oxide Fuel Cells: Structure, Thermal Expansion and Electrical Conductivity, J. Euro. Ceram. Soc. 14 (1994) 493-499.
[135] P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of mixed conductors based on Ce1-xPrxO2 solid solutions, Solid State Ionics. 116 (1999) 217-223.
[136] C.R.A. Catlow, Atomistic mechanisms of ionic transport in fast-ion conductors, J. Chem. Soc. Faraday Trans. 86 (1990) 1167-1176.
DOI: 10.1039/ft9908601167
[137] G. Boureau, S. Carniato, Apparent discrepancies between thermodynamic data and theoretical calculations of the formation energy of an oxygen vacancy in silica, Solid State Comm. 98 (1996) 485-487.
[138] I.E. Stephens, J.A. Kilner, Ionic conductivity of Ce1-xNdxO2-x/2, Solid State Ionics. 177 (2006) 669-676.
[139] R.M. Dell, A. Hooper, Oxygen ion conductors, in: P. Hagenmuller, W. Van Gool (eds. ), Solid Electrolytes: General principles, Characterization, Materials, Applications, Academic Press, New York, 1978, pp.291-311.
[140] A. Trovarelli, Structural properties and nonstoichiometric behavior of CeO2, in: A. Trovarelli (ed. ), Catalysis by Ceria and Related Materials, Imperial College Press, London, GBR 2002, pp.15-50.
[141] M. Kamiyaa, E. Shimadaa, Y. Ikumaa, M. Komatsua, H. Hanedaa, S. Sameshimaa, Y. Hirata, Oxygen self-diffusion in cerium oxide doped with Nd, J. Mater. Res. 16 (2001) 179-184.
[142] L. Eyring, The binary rare earth oxides, in: K.A. Gschneidner, L. Eyring (Eds. ), Handbook on the Physics and Chemistry of Rare Earths, North Holland, Amsterdam, Vol 3, 1979, p.337−399. 337−399.
[143] N. Stelzer, J. Nolting, I. Reiss, Phase diagram of nonstoichoimetric 10 mol% Gd2O3 doped cerium oxide determined from specific heat measurements, J. Solid State Chem. 117 (1995) 392-397.
[144] A. Atkinson, Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes, Solid State Ionics. 95 (1997) 249-258.
[145] H.L. Tuller, Defect engineering: design tools for solid state electrochemical devices, Electrochim. Acta. 48 (2003) 2879-2887.
[146] J.L.M. Rupp, C. Solenthaler, P. Gasser, U.P. Muecke, L.J. Gauckler, Crystallization of amorphous cera solid solution, Acta Met. 55 (2007) 3505-2512.
[147] E. Wachtel, I. Lubomirsky, The elastic modulus of pure and doped ceria, Scripta Met. 65 (2011) 112-117.
[148] M. Morales, J.J. Roa, X.G. Capdevila, M. Segarra, S. Pinol, Mechanical properties at the nanometer scale of GDC and YSZ used as electrolytesfor sloid oxide fuel cells, Acta Met. 58 (2010) 2504-2509.
[149] Y.L. Wang, K. Duncan, E.D. Wachsman, F. Ebrahimi, The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides, Solid State Ionics. 178 (2007) 53-58.
[150] K. Sato, H. Yugami, T. Hashida, Effect of rare-earth oxides on fracture properties of ceria ceramics, J. Mater. Sci. 39 (2004) 5765-5770.
[151] A. Atkinson, A. Selcuk, Mechanical behaviour of ceramic oxygen ion conducting membranes, Solid State Ionics. 134 (2000) 59-56.
[152] K.R. Reddy, K. Karan, Sinterability, Mechanical, Microstructural, and Electrical Properties of Gadolinium-Doped Ceria Electrolyte for Low-Temperature Solid Oxide Fuel Cells, J. Electroceram. 15 (2005) 45-56.
[153] K. Yasuda, K Uemura and T Shiota, Sintering and mechanical properties of gadolinium-doped ceria ceramics, J. Phys. Conf. Ser. 339 (2012) 1-4.
[154] F. Gallmeier, O. Bellon, N.M. Sammes, J. Staniforth, Mechanical properties and electrochemical characterisation of extruded doped cerium oxide for use as an electrolyte for solid oxide fuel cells, J. Power Sources. 75 (1998) 116-121.
[155] S. Maschio, O. Sbaizero and S. Meriani, Mechanical properties in the ceria-zirconia system, J. Eur. Ceram. Soc. 9 (1992) 127-132.
[156] T. S. Zhang, J. Ma, L. B. Kong, P. Hing J. A. Kilner, Preparation and mechanical properties of dense Ce0. 8Gd0. 2O2-δ ceramics, Solid State Ionics. 167 (2004) 191-196.
[157] N. Sammes, G. Tompsett, Y. J. Zhang, A. Cartner and R. Torrens, The structural and mechanical properties of (CeO2)1-x(GdO1. 5)x electrolytes, Denki Kagaku. 64 (1996) 674-680.
[158] J. E. Shemilt, H. M. Williams, M. J. Edirisinghe, J. R. G. Evans, B. Ralph, Fracture toughness of doped-ceria ceramics, Scripta Mater. 36 (1997) 929-934.
[159] T. S. Zhang, Z. Q. Zeng, H. T. Huang, P. Hing, J. Kilner, Effect of alumina addition on the electrical and mechanical properties of Ce0. 8Gd0. 2O2-δ ceramics, Mater. Lett. 57 (2002) 124-129.
[160] J.L. Routbort, K.C. Goretta, A.R. de Arellano-Lopez, J. Wolfenstine, Creep of Ce0. 9Gd0. 1O1. 95, Scripta Met. 38 (1998) 315-320.
[161] R. Freer, Self-diffusion and impurity diffusion in oxides. J. Mater. Sci. 15 (1980) 803–824.
DOI: 10.1007/bf00552089
[162] H. Ullmann, N. Trofimenko, F. Tietz, D. Stöver, D, A.A. Khanlou, Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid State Ionics. 138 (2000) 79–90.
[163] P. Datta, P. Majewski, F. Aldinger, Thermal expansion behaviour of Sr- and Mg- doped LaGaO3 solid electrolyte, J. Euro. Ceram. Soc. 29 (2009) 1463-1468.
[164] H. Hayashi, M. Kanoh, C. Ji Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics. 132 (2000) 227-233.
[165] S.V. Chavan, A.K. Tyagi, Phase relations and lattice thermal expansion studies in the Ce0. 50RE0. 50O1. 75 (RE = rare-earths), Mater. Sci. Eng. A 404 (2005) 57-63.
[166] C. Artini, M. Pani, A. Lausi, R. Masini, G.A. Costa High Temperature Structural Study of Gd-doped ceria by synchrotron X-ray diffraction (673 K ≤ T ≤ 1073 K), Inorg. Chem. 53 (2014) 10140-10149.
DOI: 10.1021/ic5011242
[167] A.K. Tyagi, B.R. Ambekar, M.D. Mathews, Simulation of lattice thermal expansion behaviour of Th1−xPuxO2 (0. 0≤x≤1. 0) using CeO2 as a surrogate material for PuO2, J. Alloys Compds. 337 (2002) 277-281.
[168] A.C. Momin, M.D. Mathews, High temperature thermal expansion studies of pure vanadium dioxide, gadolinium oxide, and uranium oxide-1. 5 w % gadolinium oxide solid solution, Indian J. Chem. 15A (1977) 1096.
[169] D. Soysal, Z. Ilhan, A. Ansar, R. Costa, Nanostructured Composite Cathodes by Suspension Plasma Spraying for SOFC Applications, ECS Trans. 35 (2011) 2233-2241.
DOI: 10.1149/1.3570218
[170] R. Maric, S. Seward, P.W. Faguy, M. Oljaca, Electrolyte materials for intermediate temperature fuel cells produced via combustion chemical vapor condensation, Electrochem. Solid-State Lett. 6 (2003) A91-95.
DOI: 10.1149/1.1562071
[171] J.F. Baumard, P. Abelard, Defect Structure and transport properties of ZrO2 based solid electrolytes, in: N. Clausen, M. Ruhle, A.H. Heuer (Eds. ), Science and Technology of Zirconia II, Advances in Ceramics, The American Ceramics Society, Columbus, Ohio, Vol. 12, 1983, pp.555-571.
[172] M. Kleitz, C. Pescher, L. Dessemond, Impedance spectroscopy of microstructure defects and crack characterization, in: S.P.S. Badwal, M.J. Bannister, R.H.J. Hannink (Eds. ), Science and Technology of Zirconia V, Technomic Publishing Company, Lancaster, PA, USA 1993, pp.593-610.
[173] V. Besikiotis, Development of gadolinia doped ceria electrolyte for IT-SOFC, M. Sc Thesis, University of Twente, (2008).
[174] D.D. Upadhyaya, R. Bhat, S. Ramanathan, S.K. Roy, H. Schuber, G. Petzow, Solute effect on grain growth in ceria ceramics, J. Eur. Ceram. Soc. 14 (1994) 337-341.
[175] M.N. Rahaman, Y.C. Zhou, Effect of solid solution additives on the sintering of ultra-fine CeO2 powders, J. Eur. Ceram. Soc. 15 (1995) 939-950.
[176] H. Inaba, T. Nakajima, H. Tagawa, Sintering behaviors of ceria and gadolinia-doped ceria Solid State Ionics. 106 (1998) 263-268.
[177] K. El Adham, A. Hammou, Grain boundary effect on ceria based solid solutions, Solid State Ionics. 9-10 (1983) 905-912.
[178] R. Tanaka, W.S. Oliveira, A. Brandão, J.C.C. Abrantes, J.R. Frade, Grain boundary conductivity of heterogeneous ceria gadolinia, Electrochim. Acta. 85 (2012) 116-121.
[179] M. Sakar, R. Rubini, S. Tripathy, S. Balakumar, Effect of Gd dopant concentration on the defect engineering in ceria nanostructures, Mater. Res. Bull. 47 (2012) 4340-4346.
[180] T.S. Zhang, J. Ma, H. Cheng, S.H. Chan, Ionic conductivity of high-purity Gd-doped ceria solid solutions, Mater. Res. Bull. 41 (2006) 563–568.
[181] B.G. Pound, The characterization of doped CeO2 electrodes in solid oxide fuel cells, Solid State Ionics. 52 (1992) 183-188.
[182] V. Esposito, E. Traversa, Design of electroceramics for solid oxide fuel cells applications: Playing with ceria, J. Am. Ceram. Soc. 91 (2008) 1037-1051.
[183] P. Datta, P. Majewski, F. Aldinger, Study of gadolinia dopd ceria solid electrolyte surface by XPS, Mater. Character. 60 (2009) 138-143.
[184] A. Overs, I. Riess, Properties of the Electrolyte Gadolinia doped ceria sintered from powder prepared by decomposition of mixed cerium gadolinium Ooxalate, J. Am. Ceram. Soc. 65 (1982) 606-609.
[185] K. Higashi, K. Sonoda, H. Ono, S. Sameshima, Y. Hirata, Synthesis and sintering of rare-earth-doped ceria powder by the oxalate co-precipitation method, J. Mater. Res. 14 (1999) 957-967.
[186] M.J. Godinho, R.F. Gonçalves , L.P. S Santos, J.A. Varela, E. Longo, E.R. Leite, Room temperature co-precipitation of nanocrystalline CeO2 and Ce0. 8Gd0. 2O1. 9−δ powder, Mater. Lett. 61 (2007) 1904–(1907).
[187] T.H. Hsieh, D.T. Ray, Y.P. Fu, Co-precipitation synthesis and AC conductivity behavior of gadolinium-doped ceria, Ceram. Int. 39 (2013) 7967-7973.
[188] A.K. Baral, H.P. Dasari, B.K. Kim, J.H. Lee, Effect of sintering aid (CoO) on transport properties of nanocrystalline Gd doped ceria (GDC) materials prepared by co-precipitation method, J. Alloys. Compds. 575 (2013) 455-460.
[189] W. Jung, H. Park, Y. Kang, D. Yoon, Lowering the sintering temperature of Gd-doped ceria by mechanochemical activation, Ceram. Int. 36 (2010) 371–374.
[190] K. Yamashita, K.V. Ramanujachary, M. Greenblatt, Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics, Solid State Ionics. 81 (1995) 53-60.
[191] J. Prado-Gonjal, R. Schmidt, J. Espíndola-Canuto, P. Ramos-Alvarez, E. Morán, Increased ionic conductivity in microwave hydrothermally synthesized rare-earth doped ceria Ce1−xRExO2−(x/2), J. Power Sources. 209 (2012) 163-171.
[192] A.I.Y. Tok, L.H. Luo, F.Y.C. Boey, J.L. Woodhead, Consolidation and properties of Gd0. 1Ce0. 9O1. 95 nanoparticles for solid-oxide fuel cell electrolytes, J. Mater. Res. 21 (2006) 119-124.
[193] Y. Wang, T. Mori, J.G. Li, T. Ikegami, Low-temperature synthesis of praseodymium-doped ceria nanopowders, J. Am. Ceram. Soc. 85 (12) (2002) 3105–3107.
[194] Y. C. Zhou, R. J. Phillips, J. A. Switzer. Electrochemical synthesis and sintering of nanocrystalline Cerium (IV) oxide powders, J. Am. Ceram. Soc. 78 (1995) 981–985.
[195] J.G. Li, T. Ikegami, Y. Wang, T. Mori, Reactive ceria nanopowders via carbonate precipitation, J. Am. Ceram. Soc. 85 (2002) 2376-2378.
[196] A. I. Y. Tok, L. H. Luo, F. Y. C. Boey, Carbonate Co-precipitation of Gd2O3-doped CeO2 solid solution nano-particles, Mater. Sci. Engg A. 383 (2004) 229-234.
[197] M. Akinc, D. Sordelet, Preparation of yttrium, lanthanum, cerium, and neodymium basic carbonate particles by homogeneous precipitation, Adv. Ceram. Mater. 2 (1987) 232-238.
[198] Y. C. Zhou, M. N. Rahaman. Sintering of doped, nanocrystalline CeO2 powders prepared under hydrothermal conditions, J. Mater. Sci. Technol. 11( 1995) 429-434.
[199] Y. C. Zhou, M. N. Rahaman. Hydrothermal synthesis and sintering of ultrafine CeO2 powders. J. Mater. Res. 8 (1993) 1680-1686.
[200] S. Kato, T. Iga, S. Hatano, Y. Isawa, Synthesis of NH4- AlO(OH)HCO3, Yogyo-Kyokai-Shi 84 (1976) 215–220.
[201] Y. Wang, T. Mori, J. Li, Y. Yajima, Low-temperature fabrication and electrical property of 10 mol% Sm2O3-doped CeO2 ceramics, Sci. Technol. Adv. Mater. 4 (2003) 229–238.
[202] M. J. Readey, R. R. Lee, J. W. Halloran, A.H. Heuer, Processing and sintering of ultrafine MgO-ZrO2 and (MgO, Y2O3)-ZrO2 powders, J. Amer. Ceram. Soc. 73 (1990) 1499-1503.
[203] G. B. Jung, T. J. Huang, M. H. Huang, C. L. Chang, Preparation of samaria-doped ceria for solid-oxide fuel cell electrolyte by a modified sol-gel method, J. Mater. Sci. 36 (2001) 5839-5844.
[204] W. Huang, P. Shunk, M. Greenblatt, Properties of sol-gel prepared Ce1−xSmxO2−x/2 solid electrolytes, Solid State Ionics. 100 (1997) 23-27.
[205] R.O. Fuentes, R.T. Baker, Synthesis and properties of Gadolinium-doped ceria solid solutions for IT-SOFC electrolytes, Int. J. Hydrogen Energy. 33 (2008) 3480-3484.
[206] D. Wattanasiriwech, S. Wattanasiriwech, Effects of Fuel Contents and Surface Modification on the Sol-gel Combustion Ce0. 9 Gd0. 1O1. 95 Nanopowder, Energy Procedia. 34 (2013) 524-533.
[207] C. C Chen, M. M. Narsallah, H. U. Anderson, Synthesis and Characterization of (CeO2) 0. 8 (SmO1. 5) 0. 2 Thin Films from Polymeric Precursors, J. Electrochem. Soc. 140 (1993) 3555-3560.
DOI: 10.1149/1.2221125
[208] E. Matijevic, W. P. Hsu, Preparation and properties of monodispersed colloidal particles of lanthanide compounds : I. Gadolinium, europium, terbium, samarium, and cerium(III), J. Colloid Interface Sci. 118 (1987) 506-523.
[209] J. Van Herle, T. Horita, T. Kawada, N Skai, H. Yokokawa, M. Dokiya, Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte, Solid State Ionics. 86-88 (1996) 1255-1258.
[210] T. S. Zhang, J. Ma, L. H. Luo, S. H. Chan, Preparation and properties of dense Ce0. 9Gd0. 1O2−δ ceramics for use as electrolytes in IT-SOFCs, J. Alloys Compds. 422 (2006) 46-52.
[211] A. Fakhrabadi, R.V. Mangalaraja, F. A. Sanhueza, R. E. Avila, S. Ananthakumar, S.H. Chan, Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting, J. Power Sources. 218 (2012) 307-312.
[212] Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Prog. Mater. Sci. 57 (2012) 804–874.
[213] M.G. Chourashiya, J.Y. Patil, S.H. Pawar, L.D. Jadhav, Studies on structural, morphological and electrical properties of Ce1−xGdxO2−(x/2), Mater. Chem. Phys. 109 (2008) 39-44.
[214] Y. Hirata, N. Matsunaga, M. Murao, Synthesis of Gadolinium-Doped Ceria Powders by Electrolysis of Aqueous Solutions, J. Am. Ceram. Soc. 92(2009) S11-S15.
[215] L.D. Jadhav, M.G. Chourashiya, K.M. Subhedar, A.K. Tyagi, J.Y. Patil, Synthesis of nanocrystalline Gd doped ceria by combustion technique, J. Alloys and Compds. 470 (2009) 383-386.
[216] M. Jamshidijam, R.V. Mangalaraja, A. Akbari-Fakhrabadi, S. Ananthakumar, S.H. Chan, Effect of rare earth dopants on structural characteristics of nanoceria synthesized by combustion method, Powder Technol. 253 (2014) 304-310.
[217] W. Chen, F. Li, J. Yu, Combustion synthesis and characterization of nanocrystalline CeO2- based powders via ethylene glycol-nitrate process, Mater. Lett. 60 (2006) 57–62.
[218] F. F. Muñoz, A. G. Leyva, R. T. Baker, R. O. Fuentes, Effect of preparation method on the properties of nanostructured gadolinia-doped ceria materials for IT-SOFCs, Int. J. Hydrogen Energy. 37 (2012) 14854-14863.
[219] S. Burinskas, V. Adomonis, J. Dudonis, G. Laukaitis, V. Minialga, D. Milčius, Synthesis and characterization of GDC solid electrolytes obtained by solid state sintering of multilayer thin films, Solid State Ionics. 184 (2011) 14-18.
[220] M.A. Faruk Öksüzömer, G. Dönmez, V. Sariboğa, T. G. Altinçekiç, Microstructure and ionic conductivity properties of gadolinia doped ceria (GdxCe1−xO2−x/2) electrolytes for intermediate temperature SOFCs prepared by the polyol method, Ceram. Int. 39 (2013).
[221] A. Arabaci, M. Faruk Öksüzömer, Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications, Ceram. Int. 38 (2012) 6509-6515.
[222] A. Arabaci, Effect of Sm and Gd dopants on structural characteristics and ionic conductivity of ceria, Ceram. Int. 41 (2015) 5836-5842.
[223] K.C. Anjaneya, J. Manjanna , G.P. Nayaka, V.M. Ashwin Kumar, G. Govindaraj, K.N. Ganesha, Citrate-complexation synthesized Ce0. 85Gd0. 15O2−δ (GDC15) as solid electrolyte for intermediate temperature SOFC, Physica B: Cond. Matter. 447 (2014).
[224] C. Goulart, E. Djurado, Synthesis and sintering of Gd-doped CeO2 nanopowders prepared by ultrasonic spray pyrolysis, J. Euro. Ceram. Soc. 33 (2013) 769-778.
[225] A. Gondolini, E. Mercadelli, A. Sanson, S. Albonetti, L. Doubova, S. Boldrini, Microwave-assisted synthesis of gadolinia-doped ceria powders for solid oxide fuel cells, Ceram. Int. 37 (2011) 1423-1426.
[226] E. Chinarro, J.R. Jurado, M.T. Colomer, Synthesis of ceria-based electrolyte nanometric powders by urea-combustion technique, J. Euro. Ceram. Soc. 27 (2007) 3619-3623.
[227] R.I. Walton, Solvothermal synthesis of cerium oxides, Prog. Crystl. Growth. Character. Mater. 57 (2011) 93-108.
[228] C. Kleinlogel, L. J. Gauckler, Sintering of nanocrystalline CeO2 Ceramics, Adv. Mater. 13-14 (2001) 1081-1085.
DOI: 10.1002/1521-4095(200107)13:14<1081::aid-adma1081>3.0.co;2-d
[229] C. Kleinlogel, L. J. Gauckler, Sintering and properties of nanosized ceria solid solutions, Solid State Ionics. 135 (2000) 567-573.
[230] T. S. Zhang, J. Ma, Y.J. Leng, S. H. Chan, P. Hing, J. A. Kilner, Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0. 8Gd0. 2O2−δ ceramics, Solid State Ionics. 168 (2004) 187-195.
[231] T. S. Zhang, J. Ma, Y.J. Leng, Z. M. He, Sintering, microstructure and grain growth of Fe-doped Ce0. 9Gd0. 1O2−δ ceramics derived from oxalate coprecipitation, J. Crystal Growth. 274 (2005) 603-611.
[232] G.S. Lewis, A. Atkinson, B.C.H. Steele, J. Drennan, Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria, Solid State Ionics. 152– 153 (2002) 567– 573.
[233] D. P. Fagg, V. V. Kharton, J. R. Frade, P-type electronic transport in Ce0. 80Gd0. 2O2-δ: The effect of transition metal oxide sintering aids, J. Electroceram. 9 (2002) 199-207.
[234] J.F. Baumard, C. Gault, A. Argoitia, Sintered ceria: a new dense and fine grained ceramic material, J. Less Com. Met. 127 (1987) 125-130.
[235] C. G.M. Lima, T.H. Santos, J. P.F. Grilo, R. P.S. Dutra, R. M. Nascimento, S. Rajesh, F. C. Fonseca, D. A. Macedo, Synthesis and properties of CuO-doped Ce0. 9Gd0. 1O2−δ electrolytes for SOFCs, Ceram. Int. 41 (2015) 6161-4168.
[236] Z. Tianshu, P. Hing, H. Huang, J. Kilner, Sintering and densification behaviour of Mn-doped CeO2, Mater. Sci. Engg B: Solid State Mater. Adv. Technol. 83(2001) 235–241.
[237] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, The effect of Fe doping on the sintering behavior of commercial CeO2 powders, J. Mater. Process. Technol. 113 (2001) 463–468.
[238] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Sintering study on commercial CeO2 powder with small amount of MnO2 doping, Mater. Lett. 57 (2002) 507–512.
[239] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Early stage sintering mechanisms of Fe-doped CeO2, J. Mater. Sci. 37 (2002) 997-1003.
[240] T. S. Zhang, P. Hing, H. T. Huang, J. Kilner, Sintering of Co-doped CeO2 powder, J. Mater. Sci. Lett. 21 (2002) 75-77.
[241] D. P. Fagg, J. C. C. Abrantes, D. Perez-Coll, P. Nunez, V. V. Kharton, J. R. Frade, The effect of cobalt oxide sintering aid on electronic transport in Ce0. 80Gd0. 2O2−δ electrolyte, Electrochim. Acta. 48 (2003) 1023–1029.
[242] T. S. Zhang, L. B. Kong, Z. Q. Zeng, H. T. Huang, P. Hing, Z. T. Xia, J. Kilner, Sintering behavior and ionic conductivity of Ce0. 8Gd0. 2O1. 9 with a small amount of MnO2 doping, J. Solid State Electrochem. 7 (2003) 348-354.
[243] D. Perez-Coll, P. Nunez, D. Marrero-Lopez, J. C. C. Abrantes, J. R. Frade, Effects of sintering additives on the mixed transport properties of ceria-based materials under reducing conditions, J. Solid State Electrochem. 8 (2004) 644–649.
[244] T. S. Zhang, J. Ma, S. H. Chan, J. A. Kilner, Improvements in sintering behavior and grain-boundary conductivity of ceria-based electrolytes by a small addition of Fe2O3, J. Electrochem. Soc. 151 (2004): J84–J90.
DOI: 10.1149/1.1795257
[245] T. S. Zhang, J. Ma, L. B. Kong, S. H. Chan, P. Hing, J. A. Kilner, Iron oxide as an effective sintering aid and a grain boundary scavenger for ceria based electrolytes, Solid State Ionics. 167(2004) 203-207.
[246] Y. C. Dong, S. Hampshire, J. E. Zhou, G. Y. Meng, Synthesis and sintering of Gd-doped CeO2 electrolytes with and without 1 at. CuO dopping for solid oxide fuel cell applications, Int. J. Hydrogen Energy. 36 (2011) 5054-5066.
[247] P. Mangifesta, A. Sanson, E. Roncari, Sintering mechanism of CuO-doped Ce0. 8Gd0. 2O2−δ Ceramics, ECS Transactions. 7 (2007) 2269–2276.
DOI: 10.1149/1.2729344
[248] M. F. Han, S. Zhou, Z. Liu, Z. Lei, Z. C. Kang, Fabrication, sintering and electrical properties of cobalt oxide doped Gd0. 1Ce0. 9O2−δ, Solid State Ionics. 192 (2011) 181-184.
[249] E. Jud, L. J. Gauckler. Sintering behavior of cobalt oxide doped ceria powders of different particle sizes, J. Electroceram. 14 (2005) 247-253.
[250] E. Jud, C. B. Huwiler, L. J. Gauckler, Grain growth of micronsized grains in undoped and cobalt oxide doped ceria solid solutions, J. Ceram. Soc. Japan, 114 (2006) 963-969.
[251] J. Lee, K. Choi, B. Ryu, B. Shin, I. Kim, Effects of alumina additions on sintering behavior of gadolinia-doped ceria, Ceram. Int. 30 (2004) 807-812.
[252] B. Li, X. Wei, W. Pan, Electrical properties of Mg-doped Gd0. 1Ce0. 9O1. 95 under different sintering conditions, J. Power Sources. 183 (2008) 498-505.
[253] V. Gil, J. Tartaj, C. Moure, P. Duran, Effect of Bi2O3 addition on the sintering and microstructural development of gadolinia-doped ceria ceramics, J. Euro. Ceram. Soc. 27 (2007) 801-805.
[254] V. Gil, J. Tartaj, C. Moure, P. Duran, Sintering, microstructural development, and electrical properties of gadolinia-doped ceria electrolyte with bismuth oxide as a sintering aid, J. Euro. Ceram. Soc. 26 (2006) 3161-3171.
[255] V. Gil, C. Moure, P. Duran, J. Tartaj, Low-temperature densification and grain growth of Bi2O3-doped-ceria gadolinia ceramics, Solid State Ionics. 178 (2007) 359-365.
[256] J. D. Nicholas, L. C. De Jonghe, Prediction and evaluation of sintering aids for Cerium Gadolinium Oxide, Solid State Ionics. 178 (2007) 1187-1194.
[257] P. Cho, S. B. Lee, D. Kim, J. Lee, D. Kim, H. Park, Improvement of grain-boundary conduction in gadolinia-doped ceria by the addition of CaO, Electrochem. Solid State Lett. 9 (2006) 399-402.
DOI: 10.1149/1.2214235
[258] J. Lee, K. Choi, B. Ryu, B. Shin, I. Kim, Effects of gallia additions on sintering behaviour of gadolinia-doped ceria, Mater. Res. Bull. 39 (2004) 2025-(2033).
[259] H. Yoshida, K. Miura, J. Fujita, and T. Inagaki, Effect of gallia addition on the sintering behavior of samaria-doped ceria, J. Am. Ceram. Soc. 82 (1999) 219-221.
[260] T. Zhu, Y. Lin, Z. Yang, D. Su, S. Ma, M. Han, F. Chen, Evaluation of Li2O as an efficient sintering aid for gadolinia-doped ceria electrolyte for solid oxide fuel cells, J. Power Sources. 261 (2014) 255-263.
[261] M. Han, Z. Liu, S. Zhou, L. Yu, Influence of Lithium Oxide Addition on the sintering behavior and electrical conductivity of gadolinia doped Ceria, J. Mater. Sci. Technol. 27 (2011) 460-464.
[262] L. A. Villas-Boas, F. M.L. Figueiredo, D. P.F. de Souza, F. M.B. Marques, Zn as sintering aid for ceria-based electrolytes, Solid State Ionics. 262 (2014) 522-525.
[263] L. Ge, R. Li, S. He, H. Chen, L. Guo, Enhanced grain-boundary conduction in polycrystalline Ce0. 8Gd0. 2O1. 9 by zinc oxide doping: Scavenging of resistive impurities, J. Power Sources. 230 (2013) 161-168.
[264] L. Ge, R. Li, S. He, H. Chen, L. Guo, Effect of titania concentration on the grain boundary conductivity of Ce0. 8Gd0. 2O1. 9 electrolyte, Int. J. Hydrogen Energy. 21 (2012) 16123-16129.
[265] T. Guo, L. Zhang, X. Song, X. Dong, M. M. Shirolkar, M. Wang, M. Li, H. Wang, Influences of Gd2Ti2O7 sintering aid on the densification, ionic conductivity and thermal expansion of Gd0. 1Ce0. 9O1. 95 electrolyte for solid oxide fuel cells, J. Power Sources, 262 (2014).
[266] J. D. Nicholas, Low Temperature constrained sintering of cerium gadolinium oxide films for solid oxide fuel cell applications, PhD thesis, University of California, Berkeley, (2007).
DOI: 10.2172/926303
[267] T. Ivas, Cerium-gadolinium-cobalt oxide: Phase equilibria and defect chemistry in bulk and grain boundaries, PhD Thesis, ETH Zurich, (2013).
[268] P. Duran, C. Moure, J. R. Jurado. Sintering and microstructural development of ceria-gadolinia dispersed powders, J. Mater. Sci. 29 (1994) 1940-(1948).
DOI: 10.1007/bf00351318
[269] J. G. Li, Y. R. Wang, T. Ikegami, T. Mori, T. Ishigaki, Reactive 10 mol% RE2O3 (RE = Gd and Sm) doped CeO2 nanopowders: Synthesis, characterization, and low-temperature sintering into dense ceramics, Mater. Sci. Eng. B: 121 (2005) 54-59.
[270] A. Tschöpe, E. Sommer, R. Birringer, Grain size-dependent electrical conductivity of polycrystalline cerium oxide I. Experiments, Solid State Ionics. 139 (2001) 255-265.
[271] Z. J. Shen, H. Peng, J. Liu, M. Nygren, Conversion from nano- to micron-sized structures: experimental observations, J. Eur. Ceram. Soc. 24 (2004) 3447-3452.
[272] U. Anselmi-Tamburini, J. E. Garay, Z. A. Munir, Fast low temperature consolidation of bulk nanometric ceramic materials, Scripta Mater. 54 (2006) 823-828.
[273] S. L. Hwang, I. W. Chen, Grain-size control of tetragonal zirconia polycrystals using the space-charge concept, J. Am. Ceram. Soc. 73 (1990) 3269-3277.
[274] J. Markmann, A. Tschöpe, R. Birringer, Low temperature processing of dense nanocrystalline yttrium-doped cerium oxide ceramics, Acta Mater. 50 (2002) 1433-1440.
[275] Y. C. Zhou, M. N. Rahaman, Effect of redox reaction on the sintering behavior of cerium oxide, Acta Mater. 45 (1997) 3635-3639.
[276] I. W. Chen, X. H. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature. 404 (2000) 168-171.
DOI: 10.1038/35004548
[277] W. J. Bowman, J. Zhu, R. Sharma, P. A. Crozier, Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria, Solid State Ionics. 272 (2015) 9-17.