[1]
R.Z. Valiev, A.P. Zhilyaev, T.G. Langdon. Bulk nanostructured materials: Fundamentals and applications. Wiley & Sons, New Jersey, (2014).
Google Scholar
[2]
R.Z. Valiev, T.G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51 (2006) 881-981.
DOI: 10.1016/j.pmatsci.2006.02.003
Google Scholar
[3]
A.P. Zhilyaev, T.G. Langdon. Using high-pressure torsion for metals processing: fundamentals and applications. Prog. Mater. Sci. 53 (2008) 893-979.
DOI: 10.1016/j.pmatsci.2008.03.002
Google Scholar
[4]
S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee. Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature. 398 (1999) 684-686.
DOI: 10.1038/19486
Google Scholar
[5]
S.X. McFadden, A.P. Zhilyaev, R.S. Mishra, A.K. Mukherjee. Observations of low-temperature superplasticity in electrodeposited ultrafine grained nickel. Mater. Let. 45 (2000) 345-349.
DOI: 10.1016/s0167-577x(00)00131-2
Google Scholar
[6]
A.P. Zhilyaev. Superplasticity and microstructure evolution in nanonickel. Mater. Phys. Mech. 1 (2000) 98-102.
Google Scholar
[7]
A.P. Zhilyaev, A.I. Pshenichnyuk Superplasticity and grain boundaries in ultrafine-grained materials. Cambridge Intern. Sci. Publ., Cambridge, (2010).
DOI: 10.1533/9780857093837
Google Scholar
[8]
S.X. McFadden, A.K. Mukherjee. Sulfur and superplasticity in electrodeposited ultrafine-grained Ni. Mater. Sci. Eng. A 2005 (395) 265-268.
DOI: 10.1016/j.msea.2004.12.025
Google Scholar
[9]
M.J.N.V. Prasad, A.H. Chokshi. Superplasticity in electrodeposited nanocrystalline nickel. Acta Mater. 2010 (58) 5724-5736.
DOI: 10.1016/j.actamat.2010.06.047
Google Scholar
[10]
M.J.N.V. Prasad, A.H. Chokshi. Extraordinary high strain rate superplasticity in electrodeposited nano-nickel and alloys. Scripta Mater. 2010 (63) 136-139.
DOI: 10.1016/j.scriptamat.2010.03.034
Google Scholar
[11]
M.J.N.V. Prasad, A.H. Chokshi. Deformation-induced thermally activated grain growth in nanocrystalline nickel. Scripta Mater. 2012 (67) 133-136.
DOI: 10.1016/j.scriptamat.2012.03.041
Google Scholar
[12]
A.P. Zhilyaev, A. A Gimazov, E.P. Soshnikova, A. Révész, T.G. Langdon. Microstructural characteristics of nickel processed to ultrahigh strains by high-pressure torsion. Mater. Sci. Eng. A 489 (2008) 207-212.
DOI: 10.1016/j.msea.2007.12.031
Google Scholar
[13]
K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang. Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51 (2003) 387-405.
DOI: 10.1016/s1359-6454(02)00421-4
Google Scholar
[14]
K.S. Kumar, H. Van Swygenhoven , S. Suresh. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51 (2003) 5743-5774.
DOI: 10.1016/j.actamat.2003.08.032
Google Scholar
[15]
N. Wang, Z. Wang, K.T. Aust, U. Erb. Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing. Acta Mater. 45 (1997) 1655-1669.
DOI: 10.1016/s1359-6454(96)00254-6
Google Scholar
[16]
H.J. Frost, M. F. Ashby. Deformation-Mechanism Maps, The Plasticity and Creep of Metals and Ceramics. Pergamon Press, Oxford, (1982).
Google Scholar