[1]
R. S. Mishra and Z. Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R. 50 (2005) 1–78.
Google Scholar
[2]
L. B. Johannes and R. S. Mishra, Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Mater. Sci. Eng. A. 464 (2007) 255–260.
DOI: 10.1016/j.msea.2007.01.141
Google Scholar
[3]
Z. Y. Ma, F. C. Liu, and R. S. Mishra, Superplastic deformation mechanism of an ultrafine-grained aluminum alloy produced by friction stir processing. Acta Mater. 58 (2010) 4693–4704.
DOI: 10.1016/j.actamat.2010.05.003
Google Scholar
[4]
G.C. Cornfield and R.H. Johnson, The forming of superplastic sheet metal. 12 (1970) 479–490.
Google Scholar
[5]
D. L. Holt, An analysis of the bulging of a super plastic sheet by lateral pressure. 12 (1970) 491–497.
Google Scholar
[6]
A. K. Ghosh and C. H. Hamilton, Influences of material parameters and microstructure on superplastic forming. Metall. Trans. A, 13A (1982) 733 - 743.
DOI: 10.1007/bf02642386
Google Scholar
[7]
N. Cappetti, A method for setting variables in Super Plastic Forming process. 38 (2010) 187–194.
Google Scholar
[8]
M. Sedighi and M. Moattari, Investigation of process parameters in superplastic free bulge forming. Aircr. Eng. Aerosp. Technol. 83 (2011) 208–212.
DOI: 10.1108/00022661111138611
Google Scholar
[9]
V. Pancholi and B. Kashyap, Effect of local strain distribution on concurrent microstructural evolution during superplastic deformation of Al–Li 8090 alloy. Mater. Sci. Eng. A. 351 (2003) 174–182.
DOI: 10.1016/s0921-5093(02)00849-3
Google Scholar
[10]
S. Pradeep and V. Pancholi, Superplastic Forming of Multipass Friction Stir Processed Aluminum-Magnesium Alloy. Metall. Mater. Trans. A. 45 (2014) 6207–6216.
DOI: 10.1007/s11661-014-2573-x
Google Scholar
[11]
W. Fan, B. P. Kashyap, and M. C. Chaturvedi, Anisotropy in flow and microstructural evolution during superplastic deformation of a layered-microstructured AA8090 Al-Li alloy. Mater. Sci. Eng. A. 349 (2003) 166–182.
DOI: 10.1016/s0921-5093(02)00752-9
Google Scholar
[12]
S. Rhaipu, The effect of microstructural gradients on superplastic forming of Ti–6Al–4V. Journal of Materials Processing Technology. 80–81(1998) 90–95.
DOI: 10.1016/s0924-0136(98)00179-4
Google Scholar
[13]
B. P. Kashyap, W. Fan, and M. C. Chaturvedi, Microtextural evolution during superplastic deformation of AA 8090 Al–Li alloy. Materials Science and Technology. 17 (2001) 237–248.
DOI: 10.1179/026708301773002905
Google Scholar
[14]
V. Pancholi and B. P. Kashyap, Effect of layered microstructure on superplastic forming property of AA8090 Al-Li alloy. J. Mater. Process. Technol. 186 (2007) 214–220.
DOI: 10.1016/j.jmatprotec.2006.12.036
Google Scholar
[15]
S. Pradeep and V. Pancholi, Effect of microstructural inhomogeneity on superplastic behaviour of multipass friction stir processed aluminium alloy. Materials Science & Engineering A. 561 (2013) 78–87.
DOI: 10.1016/j.msea.2012.10.050
Google Scholar
[16]
H. S. Yang and A. K. Mukherjee, An analysis of the superplastic forming circular sheet diaphragm. 34 (1992) 283–297.
DOI: 10.1016/0020-7403(92)90036-g
Google Scholar
[17]
G. Dieter and D. Bacon, Mechanical Metallurgy, McGrawHill Shoppenhangers Road Maidenhead Berkshire SL2 2QL UK (1988).
Google Scholar
[18]
K. Chockalingam and M. Neelakantan, On the pressure forming of two superplastic alloys. J. Mater, Sci. 20 (1985) 1310–1320.
DOI: 10.1007/bf01026327
Google Scholar