Influence of Calcination Temperature on the Microstructure and Crystallographic Properties of Hydroxyapatite from Black Tilapia Fish Scale

Article Preview

Abstract:

Hydroxyapatite extensively used for orthopaedic and dental reconstruction as biomaterials due to their chemical and biological similarity to human hard tissue. Therefore, this paper describes the extraction of natural hydroxyapatite from tilapia fish scale via a conventional heat treatment. The calcination temperatures (600, 800, 1000, and 1200°C) were varied. XRD results indicated that the presences of biphasic phase (HA/β-TCP) were identified during heat treatment. Transformation of biphasic phase to single phase (β-TCP) can be observed at 1200°C, results on decomposition of hydroxyapatite. The degree of crystallinity and crystallite size originated increase with the calcination temperature. The FT-IR spectra confirmed that all organic compounds were eliminated during the heat treatment process. FESEM images were used to determine the size and shape of grains of calcined samples. The biphasic mineral grain size was estimated in range of 500 – 100 nm. The analysis show that variation of calcination temperatures significantly impact on the properties of hydroxyapatite derived from tilapia fish scale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-155

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Boutinguiza, J. Pou, R. Comesaña, F. Lusquiños, A. De Carlos and B. León: Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C. 32 (2012) 478–486.

DOI: 10.1016/j.msec.2011.11.021

Google Scholar

[2] G. Muralithran and S. Ramesh: Ceram. Int. The effects of sintering temperature on the properties of hydroxyapatite. 26 (2000) 221–230.

DOI: 10.1016/s0272-8842(99)00046-2

Google Scholar

[3] J. Pena and M. Vallet-Regí: Tricalcium Phosphate and Biphasic Materials Prepared by a Liquid Mix Technique J. Eur. Ceram. Soc. 23 (2003) 1687–1696.

DOI: 10.1002/chin.200338016

Google Scholar

[4] T. Goto and K. Sasaki, Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination Ceram. Int. 40 (2014) 10777–10785.

DOI: 10.1016/j.ceramint.2014.03.067

Google Scholar

[5] N. A. M. Barakat, K. A. Khalil, F. A. Sheikh, A. M. Omran, B. Gaihre, S. M. Khil and H. Y. Kim: Mater. Sci. Eng. C Hydroxyapatite (HAp) for Biomedical Applications. 28 (2008) 1381–1387.

DOI: 10.1016/j.msec.2008.03.003

Google Scholar

[6] M. K. Herliansyah, M. Hamdi, A. Ide-Ektessabi, M. W. Wildan and J. A. Toque: Sintering Effects on Physical Properties of Bovine Hydroxyapatite (BHA)-Al^sub 2^O^sub 3^-Commercial Inert Glass (CIG) Ternary Composites. Mater. Sci. Eng. C 29 (2009).

DOI: 10.1016/j.msec.2009.01.007

Google Scholar

[7] M. Holá, J. Kalvoda, H. Nováková, R. Škoda and V. Kanický: Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling. Appl. Surf. Sci. 257 (2011) 1932–(1940).

DOI: 10.1016/j.apsusc.2010.09.029

Google Scholar

[8] C. Piccirillo, R. C. Pullar, D. M. Tobaldi, P. M. L. Castro, and M. M. E. Pintado: Hydroxyapatite and chloroapatite derived from sardine by-products. Ceram. Int. 40, no. 8 (2014) 13231-13240.

DOI: 10.1016/j.ceramint.2014.05.030

Google Scholar

[9] M. Okuda, M. Takeguchi, M. Tagaya, T. Tonegawa, A. Hashimoto, N. Hanagata and T. Ikoma: Nanometer-scale optical imaging of collagen fibers using gold nanoparticles. Micron. 40 (2009) 665–668.

DOI: 10.1016/j.micron.2009.04.001

Google Scholar

[10] S. K. Kim and E. Mendis: Review Bioactive compounds from marine processing byproducts – A review Food Res. Int. 39 (2006) 383–393.

DOI: 10.1016/j.foodres.2005.10.010

Google Scholar

[11] M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas and H. Figueiredo: Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram. Int. 36 (2010) 2383–2393.

DOI: 10.1016/j.ceramint.2010.07.016

Google Scholar