Characterisation and Wettability Properties of Anodised Titanium in Sulphuric Acid for Biomedical Application

Article Preview

Abstract:

Anodic oxidation is an effective method to modify the smooth surface (bioinert) of titanium to rough or porous surface (bioactive) to be able the titanium to be used as artificial implant in biomedical. In this study, the effect of ultraviolet (UV) light treatment on anodised titanium in various UV light treatment conditions is evaluated. Anodised titanium was prepared using traditional anodic oxidation method in 0.3 M of sulphuric acid (H2SO4). The anodised titanium was modified by using 100 V of applied voltage with constant 75 mA.cm-2 current density for 10 min of oxidation process at room temperature. After anodic oxidation, the anodised titanium undergoes UV light treatment under different wavelength and soaking duration in distilled water. The anodised titanium films were characterised using X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM). Contact angle goniometer was used to determine the wettability properties of UV light treated anodised titanium. From this study, the UV light treatment affect the wettability properties of the anodised titanium without changing it physical properties. The UV-C (365 nm) of UV light wavelength with 4 hours soaking duration produced better hydrophilic properties. This will leads better apatite formation ability when soak in simulated body fluid for bioactivity test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

170-174

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Liu, P.K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R. 47 (2004) 49-121.

DOI: 10.1016/j.mser.2004.11.001

Google Scholar

[2] M.A. Selimin, N.H.M. Idrus, and H.Z. Abdullah, Anodic oxidation of titanium for biomedical application, Adv. Mater. Res. 1087 (2015) 81-85.

DOI: 10.4028/www.scientific.net/amr.1087.81

Google Scholar

[3] K.J. Tan, H.Z. Abdullah, M.I. Idris, and C.C. Sorrell, Gel oxidation of titanium at low concentration of sodium hydroxide (NaOH), Adv. Mater. Res. 1087 (2015) 340-344.

DOI: 10.4028/www.scientific.net/amr.1087.340

Google Scholar

[4] L.L. Hench, Bioceramics: From concept to clinic, J. Amer. Ceram. Soc. 74, (1991) 1487-1510.

Google Scholar

[5] M.F. Brunella, M.V. Diamanti, M.O. Pedeferri, F. Di Fonzo, C.S. Casari, and A. Li Bassi, Photocatalytic behaviour of different titanium dioxide layers, Thin Solid Films. 515 (2007) 6309-6313.

DOI: 10.1016/j.tsf.2006.11.194

Google Scholar

[6] T. Dikici, M. Erol, M. Toparli, and E. Celik, Characterization and photocatalytic properties of nanoporous titanium dioxide layer fabricated on pure titanium substrates by the anodic oxidation process, Ceram. Int. 40 (2014) 1587-1591.

DOI: 10.1016/j.ceramint.2013.07.046

Google Scholar

[7] N. Ohtsu, H. Kanno, S. Komiya, Y. Mizukoshi, and N. Masahashi, Fabrication of visible-light-responsive titanium dioxide layer on titanium using anodic oxidization in nitric acid, Appl. Surf. Sci. 270 (2013) 513-518.

DOI: 10.1016/j.apsusc.2013.01.071

Google Scholar

[8] Z. Li, J. Li, B. Huang, X. Wu, W. Qiao, X. Luo, and Z. Chen, Ultraviolet irradiation enhanced bioactivity and biological response of mesenchymal stem cells on micro-arc oxidized titanium surfaces, Dent. Mater. Journal, (2015) 1-13.

DOI: 10.4012/dmj.2014-125

Google Scholar

[9] B. Li, Y. Li, J. Li, X. Fu, C. Li, H. Wang, S. Liu, L. Guo, S. Xin, C. Liang, and H. Li, Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation, Appl. Surf. Sci. 307 (2014) 202-208.

DOI: 10.1016/j.apsusc.2014.04.015

Google Scholar

[10] K. Uetsuki, H. Kaneda, Y. Shirosaki. S. Hayakawa, A. Osaka, Effects of UV-irradiation on in vitro apatite-forming ability of TiO2 layers, Mater. Sci. Eng. B. 173 (2010) 213-215.

DOI: 10.1016/j.mseb.2009.11.013

Google Scholar

[11] H.J. Song, S.H. Park, S.H. Jeong, and Y.J. Park, Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes, Mater. Process. Technol. 209 (2009) 864-870.

DOI: 10.1016/j.jmatprotec.2008.02.055

Google Scholar

[12] Y. Mizukoshi, and N. Masahashi, Fabrication of a TiO2 photocatalyst by anodic oxidation of Ti in a sulphuric acid electrolyte, Surf. Coat. Technol. 240 (2014) 226-232.

DOI: 10.1016/j.surfcoat.2013.12.030

Google Scholar

[13] H.Z. Abdullah, and C.C. Sorrell, Gel oxidation of titanium and effect of UV irradiation on precipitation of hydroxyapatite from simulated body fluid, Adv. Mater. Res. 488-489 (2012) 1229-1237.

DOI: 10.4028/www.scientific.net/amr.488-489.1229

Google Scholar

[14] Y.T. Sul, C.B. Johansson, Y. Jeong, and T. Albrektsson, The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Med. Eng. Phys. 233 (2001) 29-346.

DOI: 10.1016/s1350-4533(01)00050-9

Google Scholar

[15] D. Regonini, C.R. Bowen, A. Jaroenworaluck, and R. Stevens, A review of growth mechanism, structure nd rystallinity of anodized TiO2 nanotubes, Mater. Sci. Eng. R. 74 (2013) 377-406.

DOI: 10.1016/j.mser.2013.10.001

Google Scholar

[16] H. Ishizawa, and M. Ogino, Formation and characterization of anodic titanium oxide fimls containing Ca and P, Biomed. Mater. Res. 29 (1995) 65-72.

DOI: 10.1002/jbm.820290110

Google Scholar