On Using Factorial Fractional Design to Fabricate Porous Alumina Scaffolds for Bone Tissue Engineering (BTE)

Article Preview

Abstract:

The porous scaffold has a weakness in terms of compressive strength. This is due to the porosity that is inversely proportional to the strength of the porous scaffold. Greater the percentage of porosity will decreasing the compressive strength. However, this compressive strength can be improve by controlling several factors (i.e., number of PU pores, composition ratio of slurry, percentage of binder and number of coating process). In general, fabrication porous alumina by conventional process was takes a longer time and consuming high cost. In addition, the conventional process could not explain the interaction relationship between all factors. Therefore, experimental design using Minitab 16 is applied to investigate the factors’ interaction. From the analysis, a combination of composition ratio and number of coating were found to have a significant impact to increase the compressive strength (> 2MPa) while others are less significant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-190

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Jones and L.L. Hench: Curr. Opin. Solid State Mater. Sci., vol. 7 (2003), p.301–307.

Google Scholar

[2] Q. Chen, F. Baino, S. Spriano, N.M. Pugno, and C. Vitale-Brovarone: J. Eur. Ceram. Soc., vol. 34 (2014), p.2663–2673.

Google Scholar

[3] D. Bellucci, V. Cannillo, and A. Sola: Ceram. Int., vol. 37 (2011), p.145–157.

Google Scholar

[4] H.S. Costa, A.P. Mansur, E.F. Barbosa-Stancioli, M.M. Pereira, and H.S. Mansur: J. Mater. Sci., vol. 43(2007) p.510–524.

DOI: 10.1007/s10853-007-1849-6

Google Scholar

[5] I.K. Jun, Y.H. Koh, J.H. Song, S.H. Lee, and H.E. Kim: Mater. Lett., vol. 60 (2006) p.2507–2510.

Google Scholar

[6] J. M., Barrena, M.I., Morales, G., Matesanz, L., & Merino, N.: Materials Letters, 60(13-14)(2006) 1687–1692.

DOI: 10.1016/j.matlet.2005.11.092

Google Scholar

[7] M.A.A., Hong, L. C., Arifin Ahmad, Z., & Md Akil, H. Journal of Materials Processing Technology, 207(1-3) (2008) p.235–239.

Google Scholar

[8] A. Kukreja, P. Chopra, A. Aggarwal, and P. Khanna: Int. J. Model. Optim., vol. 1 (2011), p.205–209, (2011).

Google Scholar

[9] T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, Å. Nyström, J. Pettersen, and R. Bergman: Chemom. Intell. Lab. Syst., vol. 42 (1998), p.3–40.

DOI: 10.1016/s0169-7439(98)00065-3

Google Scholar

[10] Y. Dong, T. Bickford, H. J. Haroosh, K. -T. Lau, and H. Takagi: Appl. Phys. A, vol. 112 (2013), p.747–757.

Google Scholar

[11] S. Kehoe, M. Ardhaoui, and J. Stokes: J. Mater. Eng. Perform., vol. 20 (2010), p.1423–1437.

Google Scholar

[12] M. Zanetta, N. Quirici, F. Demarosi, M. C. Tanzi, L. Rimondini, and S. Farè: Acta Biomater., vol. 5 (2009), p.1126–36.

DOI: 10.1016/j.actbio.2008.12.003

Google Scholar

[13] L. Gremillard, R. Casadei, E. Saiz, and A. P. Tomsia: J. Mater. Sci., vol. 41(2006), p.5200–520.

Google Scholar