Why a Comprehensive Physical Characterization Effort of Microdialysis Membranes is Imperative for Computational Mass Transfer Studies?

Article Preview

Abstract:

Microdialysis, being a well-established sampling technique, still suffers from mass transfer limitations. Arguably, the biggest contributor to mass transfer limitation in this case is the membrane layer. To reduce limitations to mass transfer, and at the same time, increasing the performance of microdialysis probes, a concise mass transfer analysis must be done. For microdialysis probes, being relatively small in size and operating under possibly stringent biological conditions, an experimental route of analysis is less preferred compared to a computational route. This paper looks at the needs of computational mass transfer studies, and provides an idea why a comprehensive physical characterization effort is imperative for computational mass transfer studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-184

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.M. Kho, A. Aziz, Z.A. Ahmad, S.K. Enche Ab Rahim, N.S. Abdullah: Initial Efforts in Modelling Mass Transport in Microdialysis Probes: Physical Characterization of the Microdialysis Probe Membrane. Adv. Mater. Res. 1087 (2015), pp.365-369.

DOI: 10.4028/www.scientific.net/amr.1087.365

Google Scholar

[2] R.A. Saylor, S.M. Lunte: A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J. Chromatogr. A 1382 (2015), pp.48-64.

DOI: 10.1016/j.chroma.2014.12.086

Google Scholar

[3] H. Haugaa, E.B. Thorgersen, A. Pharo, K.M. Boberg, A. Foss, P.D. Line, T. Sanengen, R. Almaas, G. Grindheim, L. Wælgaard, S.E. Pischke, T.E. Mollnes, T.I. Tønnessen: Inflammatory Markers Sampled by Microdialysis Catheters Distinguish Rejection From Ischemia in Liver Grafts. Liver Transplant. 18 (2012).

DOI: 10.1002/lt.23503

Google Scholar

[4] S.H. Haddad, Y.M. Arabi: Critical care management of severe traumatic brain injury in adults. Scand. J. Trauma Resusc. Emerg. Med. 20 (2012), pp.1-12.

DOI: 10.1186/1757-7241-20-12

Google Scholar

[5] P.M. Bungay, T. Wang, H. Yang, W.F. Elmquist: Utilizing transmembrane convection to enhance solute sampling and delivery by microdialysis: theory and in vitro validation. J. Membr. Sci. 348 (2010), pp.131-149.

DOI: 10.1016/j.memsci.2009.10.050

Google Scholar

[6] N. Torto, J. Bång, S. Richardson, G.S. Nilsson GS, L. Gorton L, T. Laurell T, G. Marko-Varga: Optimal membrane choice for microdialysis sampling of oligosaccharides. J. Chromatogr. A. 806 (1998), pp.265-278.

DOI: 10.1016/s0021-9673(98)00063-6

Google Scholar

[7] S.K. Enche Ab Rahim: Mathematical Modelling of Mass Transport in Linear, Shunt and Concentric Microdialysis Probes. Ph.D. Thesis, Universiti Malaysia Perlis.

Google Scholar

[8] S.K. Enche Ab Rahim, M.I.H. Mohamed Dzahir, D. Arbain, N.S. Abdullah: Microdialysis technique: Overview and applications in biomedical research. Proc. International Malaysia-Ireland Joint Symposium on Engineering, Science and Business 2012 (IMIEJS 2012).

Google Scholar

[9] N.S. Abdullah: Mathematical Modelling of Nutrient Transport in Bioreactors for Bone Tissue Growth. D. Phil. Thesis, University of Oxford.

Google Scholar

[10] M.I. Davies, J.D. Cooper, S.S. Desmond, C.E. Lunte, S.M. Lunte: Analytical considerations for microdialysis sampling. Adv. Drug Deliv. Rev. 45 (2000), pp.169-188.

DOI: 10.1016/s0169-409x(00)00114-9

Google Scholar

[11] A. Mehta, A.L. Zydney: Permeability and selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 249 (2005), pp.245-249.

DOI: 10.1016/j.memsci.2004.09.040

Google Scholar

[12] N.S. Abdullah, D.R. Jones, D.B. Das: Nutrient transport in bioreactors for bone tissue growth: why do hollow fibre membrane bioreactors work? Chem. Eng. Sci. 64, (2009), pp.109-125.

DOI: 10.1016/j.ces.2008.09.017

Google Scholar

[13] J.A. Stenken, E.M. Topp, M.Z. Southard, C.E. Lunte: Examination of microdialysis sampling in a well-characterized hydrodynamic system. Anal. Chem. 65 (1993) pp.2324-2328.

DOI: 10.1021/ac00065a026

Google Scholar

[14] W.S. Opong, A.L. Zydney: Diffusive and convective protein transport through asymmetric membranes. AIChE J. 37 (1991) pp.1497-1510.

DOI: 10.1002/aic.690371007

Google Scholar

[15] K. Sakai: Determination of pore-size and pore-size distribution. 2. Dialysis membranes. J. Membr. Sci. 96 (1994) pp.91-130.

DOI: 10.1016/0376-7388(94)00127-8

Google Scholar

[16] E. Nagy: Basic Equations of the Mass Transport Through a Membrane Layer (Elsevier, 2012).

Google Scholar

[17] P. Xu, B. Yu: Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 31 (2008), pp.74-81.

DOI: 10.1016/j.advwatres.2007.06.003

Google Scholar