Characterization of Fatty Acid Coated Polymer/Nucleotide Droplets

Article Preview

Abstract:

The transition from non-living to living matter has been reported can be achieved in the laboratory via designing and constructing the protocell models [1]. Protocell is a study of origin of life theory whereby it is not a true cell, but a term used to refer to early cells or primitive cells. There are two types of protocell model; vesicles and coacervates. Vesicles are biological membranes; provide a semi-permeable boundary between the internal and external environment of a cell and are constructed via self-assembly of lipid and fatty acid molecules [2-5]. While vesicles are made of self-assembly of lipid molecules, coacervates are mixtures of two or more polymers in aqueous solution that spontaneously phase separated to form droplets. Coacervate droplets have been proposed as a potential alternative protocell model because of compartmentalization properties [6-11].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

213-219

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mann, Systems of creation: the emergence of life from nonliving matter, Acc. Chem. Res. 45(12) (2012) 2131-2141.

DOI: 10.1021/ar200281t

Google Scholar

[2] P.C. Hiemenz, T.P. Lodge, Polymer Chemistry, 2nd ed, CRC Press, Bosa Raton, FL, (2007).

Google Scholar

[3] P.E. de Gennes, P. Pincus, R.M. Velaso, F. Brochard,  J. Physique 37 (1976) 1461.

Google Scholar

[4] T. Odijk, A.C. Houwart, J. Polym. Sci. Polym. Phys. 16 (1978) 627.

Google Scholar

[5] G. S. Manning, The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides, Quarterly Review of Biophysics 11(2) (1978) 179-246.

DOI: 10.1017/s0033583500002031

Google Scholar

[6] A. Vaccaro, J. Hierrezuelo, M. Skarba, P. Galletto, J. Kleimann, M. Borkovec, Structure of an adsorbed polyelectrolyte monolayer on oppositely charged colloidal particles. Langmuir, 25(9) (2009) 4864-4867.

DOI: 10.1021/la9007608

Google Scholar

[7] H. Dautzenberg, W. Jaeger, J. Kötz, B. Philipp, C. Seidel, D. Stscherbina, Polyelectrolytes: formation, characterization, application, Carl Hanser Verlag, München, (1994).

DOI: 10.1002/pi.1995.210380118

Google Scholar

[8] C. Wandrey, J. Hernández-Barajas, D. Hunkeler, Adv. Polym. Sci. 145 (1999) 123.

Google Scholar

[9] Y. Li, P.L. Dubin, H.A. Havel, S.L. Edwards, H. Dautzenberg, Complex formation between polyelectrolyte and oppositely charged mixed micelles: soluble complexes vs coacervation, Langmuir 11(7) (1995) 2486-2492.

DOI: 10.1021/la00007a029

Google Scholar

[10] Y. Wang, K. Kimura, Q. Huang, P.L. Dubin, Polyelectrolyte-micelle coacervation: effects of micelle surface charge density, polymer molecular weight, and polymer/surfactant ratio, Macromol. 33(9) (2000) 3324-3331.

DOI: 10.1021/ma991886y

Google Scholar

[11] P.L. Dubin, Y. Li, W. Jaeger, Mesophase separation in polyelectrolyte-mixed micelle coacervates, Langmuir 24(9) (2008) 4544-4549.

DOI: 10.1021/la702405d

Google Scholar

[12] D.S. Williams, S. Koga, Cik Rohaida Che Hak, A. Majrekar, A. J. Patil, A.W. Perriman, S. Mann, Soft Matter. 8 (2012) 6004.

DOI: 10.1039/c2sm25184a

Google Scholar

[13] S. Mukherjee, A. Dan, S.C. Bhattacharya, A.K. Panda and A.P. Moulik, Langmuir, 27 (2011) 5222.

Google Scholar

[14] K.W. Mattison, I.J. Brittain, P.L. Dubin, Protein-polyelectrolyte phase boundaries, Biotechnol. Progr. 11(6) (1995) 632-637.

DOI: 10.1021/bp00036a005

Google Scholar

[15] Cik Rohaida Che Hak, PhD Thesis, University of Bristol, (2012).

Google Scholar

[16] P. Walde, K. Morigaki, Formation and Transformation of Fatty acid/Soap Vesicles in: Self Assembly, B.H. Robinson ed., IOS Press, Amsterdam, 2003, p.443.

Google Scholar