Compression Strength of Gellan Gum Hydrogel Incorporated with Organo-Montmorillonite and Cloisite 15A

Article Preview

Abstract:

The uniformly cross-linked gellan gum hydrogel with sodium montmorillonite (Na-MMT), organo-montmorillonite (CTAB-MMT) and Cloisite 15A were successfully prepared. The compression performances of the hydrogels were investigated. The results show that the GG hydrogels containing Cloisite 15A required smallest volume to achieve optimum compression stress, modulus and compression strain at 5% (w/w) compared to both Na-MMT and CTAB-MMT at 10% (w/w), respectively. The decrease in compression performances of gellan gum hydrogel at higher concentration containing those clays could be due to agglomeration process which created the entangled structure and bring up the brittleness of hydrogel properties. Overall, the presence of the clays significantly improved the mechanical performances of gellan gum hydrogels which beneficial to be used in tissue engineering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

236-239

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Aalaie, E. Vasheghani-Farahani, A. Rahmatpour, M.A. Semsarzadeh: Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur. Pol. J. 44 (2008) 2024-(2031).

DOI: 10.1016/j.eurpolymj.2008.04.031

Google Scholar

[2] A. Bortolin, F.A. Aouada, L.H. Mattoso, C. Ribeiro: Nanocomposite PAAm/ Methyl Cellulose/Montmorillonite Hydrogel: Evidence of Synergistic Effects for the Slow Release of Fertilizers. J. Agr. food Chem., 61 (2013) 7431-7439.

DOI: 10.1021/jf401273n

Google Scholar

[3] K. Haraguchi, H. -J. Li: Mechanical Properties and Structure of Polymer−Clay Nanocomposite Gels with High Clay Content. Macromol., 39 (2006) 1898-(1905).

DOI: 10.1021/ma052468y

Google Scholar

[4] E.R. Kenawy, E.A. Kamoun, M.S.M. Eldin, M.A. El-Meligy: Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian J. Chem. 7 (2014) 372-380.

DOI: 10.1016/j.arabjc.2013.05.026

Google Scholar

[5] M. Amin, K. Anuar, K.J. Gilmore, J. Matic, S. Poon, M.J. Walker, M.R. Wilson: Polyelectrolyte Complex Materials Consisting of Antibacterial and Cell-Supporting Layers. Macromol. Biosci., 12 (2012) 374-382.

DOI: 10.1002/mabi.201100317

Google Scholar

[6] N.J. Whiteside, G.G. Wallace, M. in het Panhuis: Highly conducting composite hydrogels from gellan gum, PEDOT: PSS and carbon nanofibres. Synthetic Met. 168 (2013) 36-42.

DOI: 10.1016/j.synthmet.2015.05.004

Google Scholar

[7] E. Ogawa, R. Takahashi, H. Yajima, K. Nishinari: Effects of molar mass on the coil to helix transition of sodium-type gellan gums in aqueous solutions. Food Hydrocolloids, 20 (2006) 378-385.

DOI: 10.1016/j.foodhyd.2005.03.016

Google Scholar

[8] K. Kani, J. -i. Horinaka, S. Maeda: Effects of monovalent cation and anion species on the conformation of gellan chains in aqueous systems. Carbohyd. polymers, 61 (2005) 168-173.

DOI: 10.1016/j.carbpol.2005.04.011

Google Scholar

[9] P. Bordes, E. Pollet, L. Avérous: Compositional, physical and chemical modification of polylactide. Prog. Pol. Sci., 34 (2009) 125-155.

Google Scholar

[10] F. Chivrac, E. Pollet, L. Avérous: Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater. Sci. Eng. R:, 67 (2009) 1-17.

DOI: 10.1016/j.mser.2009.09.002

Google Scholar

[11] A. Cojocariu, L. Profire, M. Aflori, C. Vasile: In vitro drug release from chitosan/Cloisite 15A hydrogels. Appl. Clay Sci. 57 (2012) 1-9.

DOI: 10.1016/j.clay.2011.11.030

Google Scholar

[12] Y. Kim, V. Ramesh Babu, D.T. Thangadurai, K. Krishna Rao, H. Cha, C. Kim, W. Joo, Y. Lee: Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies. Bull Kor Chem. Soc., 32 (2011).

DOI: 10.5012/bkcs.2012.33.10.3191

Google Scholar

[13] J.H. Chang, T.G. Jang, K.J. Ihn, W.K. Lee, G.S. Sur: Poly(vinyl alcohol) nanocomposites with different clays: Pristine clays and organoclays. J. Appl. Pol. Sci., 90 (2003) 3208-3214.

DOI: 10.1002/app.12996

Google Scholar