[1]
J. Aalaie, E. Vasheghani-Farahani, A. Rahmatpour, M.A. Semsarzadeh: Effect of montmorillonite on gelation and swelling behavior of sulfonated polyacrylamide nanocomposite hydrogels in electrolyte solutions. Eur. Pol. J. 44 (2008) 2024-(2031).
DOI: 10.1016/j.eurpolymj.2008.04.031
Google Scholar
[2]
A. Bortolin, F.A. Aouada, L.H. Mattoso, C. Ribeiro: Nanocomposite PAAm/ Methyl Cellulose/Montmorillonite Hydrogel: Evidence of Synergistic Effects for the Slow Release of Fertilizers. J. Agr. food Chem., 61 (2013) 7431-7439.
DOI: 10.1021/jf401273n
Google Scholar
[3]
K. Haraguchi, H. -J. Li: Mechanical Properties and Structure of Polymer−Clay Nanocomposite Gels with High Clay Content. Macromol., 39 (2006) 1898-(1905).
DOI: 10.1021/ma052468y
Google Scholar
[4]
E.R. Kenawy, E.A. Kamoun, M.S.M. Eldin, M.A. El-Meligy: Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian J. Chem. 7 (2014) 372-380.
DOI: 10.1016/j.arabjc.2013.05.026
Google Scholar
[5]
M. Amin, K. Anuar, K.J. Gilmore, J. Matic, S. Poon, M.J. Walker, M.R. Wilson: Polyelectrolyte Complex Materials Consisting of Antibacterial and Cell-Supporting Layers. Macromol. Biosci., 12 (2012) 374-382.
DOI: 10.1002/mabi.201100317
Google Scholar
[6]
N.J. Whiteside, G.G. Wallace, M. in het Panhuis: Highly conducting composite hydrogels from gellan gum, PEDOT: PSS and carbon nanofibres. Synthetic Met. 168 (2013) 36-42.
DOI: 10.1016/j.synthmet.2015.05.004
Google Scholar
[7]
E. Ogawa, R. Takahashi, H. Yajima, K. Nishinari: Effects of molar mass on the coil to helix transition of sodium-type gellan gums in aqueous solutions. Food Hydrocolloids, 20 (2006) 378-385.
DOI: 10.1016/j.foodhyd.2005.03.016
Google Scholar
[8]
K. Kani, J. -i. Horinaka, S. Maeda: Effects of monovalent cation and anion species on the conformation of gellan chains in aqueous systems. Carbohyd. polymers, 61 (2005) 168-173.
DOI: 10.1016/j.carbpol.2005.04.011
Google Scholar
[9]
P. Bordes, E. Pollet, L. Avérous: Compositional, physical and chemical modification of polylactide. Prog. Pol. Sci., 34 (2009) 125-155.
Google Scholar
[10]
F. Chivrac, E. Pollet, L. Avérous: Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater. Sci. Eng. R:, 67 (2009) 1-17.
DOI: 10.1016/j.mser.2009.09.002
Google Scholar
[11]
A. Cojocariu, L. Profire, M. Aflori, C. Vasile: In vitro drug release from chitosan/Cloisite 15A hydrogels. Appl. Clay Sci. 57 (2012) 1-9.
DOI: 10.1016/j.clay.2011.11.030
Google Scholar
[12]
Y. Kim, V. Ramesh Babu, D.T. Thangadurai, K. Krishna Rao, H. Cha, C. Kim, W. Joo, Y. Lee: Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA- Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies. Bull Kor Chem. Soc., 32 (2011).
DOI: 10.5012/bkcs.2012.33.10.3191
Google Scholar
[13]
J.H. Chang, T.G. Jang, K.J. Ihn, W.K. Lee, G.S. Sur: Poly(vinyl alcohol) nanocomposites with different clays: Pristine clays and organoclays. J. Appl. Pol. Sci., 90 (2003) 3208-3214.
DOI: 10.1002/app.12996
Google Scholar