[1]
J. Van Jaarsveld, J. Van Deventer and G. Lukey, The characterisation of source materials in fly ash-based geopolymers, Materials Letters, vol. 57, p.1272–1280, (2003).
DOI: 10.1016/s0167-577x(02)00971-0
Google Scholar
[2]
Diaz, E.I.; Allouche, E.N.; Eklund, S., Factors affecting the suitability of fly ash as source material for geopolymers, Fuel, vol. 89, p.992–996, (2010).
DOI: 10.1016/j.fuel.2009.09.012
Google Scholar
[3]
P. Chindaprasirt and U. Rattanasak, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Management , vol. 30, p.667–672, (2010).
DOI: 10.1016/j.wasman.2009.09.040
Google Scholar
[4]
P. Chindaprasirt, U. Rattanasak and C. Jaturapitakkul, Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials, Cement & Concrete Composites , vol. 33 , p.55–60, (2011).
DOI: 10.1016/j.cemconcomp.2010.09.017
Google Scholar
[5]
A. M. Fernández-Jiménez and A. Palomo, Characterisation of Fly Ash. Potential Reactivity as Alkaline Cements, FUEL, vol. 82, pp.2259-2265, (2003).
DOI: 10.1016/s0016-2361(03)00194-7
Google Scholar
[6]
K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul and P. Chindaprasirt, NaOH-activated ground fly ash geopolymer cured at ambient temperature, FUEL, vol. 90, p.2118–2124, (2011).
DOI: 10.1016/j.fuel.2011.01.018
Google Scholar
[7]
J. J. Ekaputri, Triwulan, K. A. Priadana, T. E. Susanto and S. Junaedi, Physico-Chemical Characterization of Fly Ash, in The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, (2013).
Google Scholar
[8]
J. J. Ekaputri, M. B. Ulum, Triwulan, B. Ridho, T. E. Susanto and M. M. A. B. Abdullah, A Comprehensive Characterization and Determination of Fly Ashes In Indonesia using Different Methods, Applied Mechanics and Materials, Vols. 754-755, pp.320-325, (2015).
DOI: 10.4028/www.scientific.net/amm.754-755.320
Google Scholar
[9]
American Society for Testing and Materials, Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete, ASTM C311, in Annual Book of ASTM Standard, West Conshohocken, USA, (2004).
DOI: 10.1520/c0311-00
Google Scholar
[10]
American Society for Testing and Materials, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM C618, in Annual Book of ASTM Standard, West Conshohocken, US, (2004).
DOI: 10.1520/c0618-00
Google Scholar
[11]
C. -H. Huang, S. -K. Lin, C. -S. Chang and H. -J. Chen, Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash, Construction and Building Materials, vol. 46, p.71–78, (2013).
DOI: 10.1016/j.conbuildmat.2013.04.016
Google Scholar
[12]
P. Chindaprasirt, T. Chareerat, S. Hatanaka and T. Cao, High-Strength Geopolymer Using Fine High-Calcium Fly Ash, Journal of Materials in Civil Engineering, vol. 23, no. 3, pp.264-270, 1 March (2011).
DOI: 10.1061/(asce)mt.1943-5533.0000161
Google Scholar
[13]
P. Chindaprasirt, C. Jaturapitakkul and T. Sinsiri, Effect of Fly Ash Fineness on Compressive Strength and Pore Size of Blended Cement Paste, Cement & Concrete Composites, vol. 27, pp.425-428, (2005).
DOI: 10.1016/j.cemconcomp.2004.07.003
Google Scholar
[14]
A. Palomo, M. W. Grutzeck and M. T. Blanco, Alkali-activated Fly Ashes A Cement for the Future, Cement and Concrete Research, vol. 29, p.1323–1329, (1999).
DOI: 10.1016/s0008-8846(98)00243-9
Google Scholar
[15]
A. M. Fernández-Jiménez, A. Palomo and C. Lopez-Hombrados, Engineering Properties of Alkali-Activated Fly Ash Concrete, ACI Materiasl Journal, vol. 103, no. 2, pp.106-112, March-April (2006).
Google Scholar
[16]
S. Kumar and R. Kumar, Mechanical Activation of Fly Ash: Effect on Reaction, Structure and Properties of Resulting Geopolymer, Ceramics International, vol. 37, pp.533-541, (2011).
DOI: 10.1016/j.ceramint.2010.09.038
Google Scholar