Materials Science Forum
Vol. 848
Vol. 848
Materials Science Forum
Vol. 847
Vol. 847
Materials Science Forum
Vol. 846
Vol. 846
Materials Science Forum
Vol. 845
Vol. 845
Materials Science Forum
Vol. 844
Vol. 844
Materials Science Forum
Vol. 843
Vol. 843
Materials Science Forum
Vol. 842
Vol. 842
Materials Science Forum
Vol. 841
Vol. 841
Materials Science Forum
Vol. 840
Vol. 840
Materials Science Forum
Vols. 838-839
Vols. 838-839
Materials Science Forum
Vols. 836-837
Vols. 836-837
Materials Science Forum
Vol. 835
Vol. 835
Materials Science Forum
Vol. 834
Vol. 834
Materials Science Forum Vol. 842
Paper Title Page
Abstract: The quality and safety of processed food strongly depend on their packaging and the protection that it provides. The increasing accumulation of synthetic non-biodegradable plastics in the environment represents a threat to the natural habitats. This has lead companies and researchers to explore different ways to develop bio-based polymers made from a variety of agricultural commodities and/or food waste products. Recently, plant-based polysaccharides such as hemicelluloses and celluloses have attracted attention as replacements for petroleum-based materials. In this context, the cell wall composition determines the quality of most plant-based products used in modern human societies. Nutritional and processing properties of plant-based foods are heavily influenced by wall properties. Fibres for textiles, paper manufacture, timber products and now, for fuel and bio-composites manufacture, are largely composed of, or derived from, walls. As the largest source of renewable carbon, plant cell walls have a critical future role in providing transport fuels, food security, functional foods to improve human health, and as raw materials for industrial processes. The use of cellulose materials as polysaccharides source offers the possibility of obtaining new advanced biomaterials for fresh or processed foods sustainability. In this review, the cell wall metabolism, extraction and hydrolyzation of polysaccharides in different microorganisms and plants, and their application for the development of new carbohydrate-based advanced biomaterials that can be applied for the food industry are reported.
182
Abstract: Synthesis and characterization of a new hybrid ion exchange material Zirconiumresorcinol Phosphate (ZrRP) is reported in this study. Synthetic conditions such as reactant concentrations and mixing volume ratio were varied to optimize the ion exchange properties of this material. The material has Na+ ion exchange capacity equal to 1.7 meq/g (dry). X-ray diffraction spectra suggest that it is amorphous in nature. This ion-exchanger was also characterization by SEM, IR and TGA-DTG. Various studies such as determination of ion exchange capacity, elution behaviour and pH titration has been performed for different metal ions such as K+, Ca2+, Sr2+, Mg2+, Ni2+, Cd2+. This material has potential application for removal of these ions from the aqueous systems. Effect of anionic (SDS) and nonionic (TX-100) surfactants has also been studied on the adsorption behavior of ZrRP. The material has been found to be selective for Mg2+and Cd2+. We also found that the material showed remarkable adsorption behavior towards some dyes like malachite green and methylene blue.
196