Synthesis and Characterization of Zirconium-Resorcinol Phosphate; A New Hybrid Cation Exchanger and Dye Adsorbent for Water Treatment

Article Preview

Abstract:

Synthesis and characterization of a new hybrid ion exchange material Zirconiumresorcinol Phosphate (ZrRP) is reported in this study. Synthetic conditions such as reactant concentrations and mixing volume ratio were varied to optimize the ion exchange properties of this material. The material has Na+ ion exchange capacity equal to 1.7 meq/g (dry). X-ray diffraction spectra suggest that it is amorphous in nature. This ion-exchanger was also characterization by SEM, IR and TGA-DTG. Various studies such as determination of ion exchange capacity, elution behaviour and pH titration has been performed for different metal ions such as K+, Ca2+, Sr2+, Mg2+, Ni2+, Cd2+. This material has potential application for removal of these ions from the aqueous systems. Effect of anionic (SDS) and nonionic (TX-100) surfactants has also been studied on the adsorption behavior of ZrRP. The material has been found to be selective for Mg2+and Cd2+. We also found that the material showed remarkable adsorption behavior towards some dyes like malachite green and methylene blue.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-208

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.V. Marinin, G.N. Brown, Studies of sorbent/ ion exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness ground waters, Waste Manag. 20 (2000) 545-553.

DOI: 10.1016/s0956-053x(00)00017-9

Google Scholar

[2] B. Preetha, C. Jonardanan, Ion exchange method for the detection of trace amounts of Mn2+ using nano cerium zirconium phosphate cation exchanger, Ion Exch. Lett. 3 (2010) 12-18.

Google Scholar

[3] R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Selective adsorption of phosphate from sea water and waste water by amorphous zirconium hydroxide, J. ColliodInterf. Sci. 297 (2006) 426-433.

DOI: 10.1016/j.jcis.2005.11.011

Google Scholar

[4] V.N. Lebedev, N.A. Mel'nik, A.V. Rudenko, Sorption of cesium on titanium and zirconium phosphates, Radiochemistry 45 (2003) 149-151.

Google Scholar

[5] S. Rehman, N. Islam, S. Ahad, S.Z. Fatima, A.H. Pandith, Preparation and characterization of 5-sulphosalicylic acid dopedtetraethoxysilane composite ion-exchange material by sol–gel method, J. Hazard. Mater. 260 (2013) 313-322.

DOI: 10.1016/j.jhazmat.2013.05.036

Google Scholar

[6] A. Naeem, S. Mustafa, N. Rehana, B. Dilara, S. Murtaza, The sorption of divalent metal ions on AlPO4, J. Colloid. Interf. 252(1) (2002)6-14.

DOI: 10.1006/jcis.2002.8425

Google Scholar

[7] M.M. Abou-Mesalam, Applications of inorganic ion exchangers: II- adsorption of some heavy metal ions from their aqueous waste solutions using synthetic iron (III) titanates, Adsorption 10(2004) 1087-1092.

DOI: 10.1023/b:adso.0000024038.32712.18

Google Scholar

[8] S.D. Ajagekar, Z.R. Turel, Selective adsorption and radiochemical separation of Sr(II) using zirconium phosphate ion exchanger, J. Ind. Council. Chem. 26 (2010) 187-189.

Google Scholar

[9] M.A. Hafez, I.M. Kenway, M.A. Akl, R.R. Lshein, Preconcentration and separation of total mercury in environmental samples using chemically modified chloromethylated polystyrene – PAN, Talanta53 (2001)749.

DOI: 10.1016/s0039-9140(00)00524-5

Google Scholar

[10] M. Nushad, R. Mitra, J. Raguvanshi, Use of Neutral Red modified strong acid cation exchange resin for separation of heavy metal ions, Ion Exch. Lett. 2 (2009) 31-34.

Google Scholar

[11] L.S. Campbell, A. Chimedtsogzol, A. Dyer. Species sensitivity of zeolite minerals for uptake of mercury solutes, Mineral. Mag. 70 (2006) 361-371.

DOI: 10.1180/0026461067040341

Google Scholar

[12] H. Zheng, H. Han, Y. Ma, H. Zheng, D Zheng, D. Liu, S. Liang. Adsorption characteristics of ammonium ion by Zeolite 13X, J. Hazard. Mater. 158 (2008) 577-584.

DOI: 10.1016/j.jhazmat.2008.01.115

Google Scholar

[13] I. Khan, S.A. Siddiqui, A.A. Khan. Synthesis, characterization and ion exchange properties of a new and novel organic-inorganic, hybrid cation-exchanger: nylon-6, 6, Zr(IV) phosphate, Talanta. 71 (2007) 841.

DOI: 10.1016/j.talanta.2006.05.042

Google Scholar

[14] K.G. Varshney, A.H. Pandith. Synthesis and ion exchange behavior of acrylonitrile based zirconium-phosphate ; a new hybrid ion-exchanger. J. Indian Chem. Soc. 78 (2001) 250-253.

Google Scholar

[15] K.G. Varshney,V. Jain, A. Agrawal, S.C. Mojumdar. Pyridine based zirconium (IV) and tin (IV) phosphates as new and novel intercalated ion exchangers; synthesis, characterization and analytical applications, J. Therm. Calorim. 86 (2006) 609-621.

DOI: 10.1007/s10973-006-7716-x

Google Scholar

[16] A.A. Khan, Inamuddin, Cation-exchange kinetics and electrical conductivity studies of an organic-inorganic, composite cation-exchanger : polypyrrole Th(IV) phosphate, J. Appl. Polym. Sci. 105 (2007) 2806 - 2815.

DOI: 10.1002/app.25183

Google Scholar

[17] C.L. Chiang, R.C. Chang, Y.C. Chiu. Thermal stability and thermal degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/ silicon/ phosphorus by sol-gel method. Thermochim. Acta. 453 (2007) 97-104.

DOI: 10.1016/j.tca.2006.11.013

Google Scholar

[18] H. Patel, A. Parikh, U. A. Chudasama. Comparative study of proton transport properties of metal (IV) tungstates and their organic derivatives, Bull. Mater. Sci. 28 (2005) 137-144.

DOI: 10.1007/bf02704233

Google Scholar

[19] A.M. Khan, M. A. Asiri, N. Rub, N. Azum, A.S.P. Khan, I. Khan, P.K. Mondal. Review on composite cation exchanger as interdisciplinary materials in analytical chemistry, Int. J. Electrochem. Sci. 7 (2012) 3854-3902.

DOI: 10.1016/s1452-3981(23)19507-1

Google Scholar

[20] R. Thomas. Synthesis, properties and analytical applications of titanium (IV) phosphor-sulphosalicylate - a new hybrid inorganic-organic ion exchanger, Ort. J. Chem. 24 (2008) 1139-1146.

Google Scholar

[21] S.A. Nabi, A.H. Shalla. EDTA-stannic (IV) iodate : preparation, characterization and its analytical applications for metal content determination in real and synthetic samples, J. Porous Mater. 16 (2009) 587-597.

DOI: 10.1007/s10934-008-9236-5

Google Scholar

[22] W.A. Siddiqui, S.A. Khan. Synthesis and characterization and ion exchange properties of zirconium (IV) tungstoiodophosphate – a new cation exchanger, Bull. Mater. Sci. (2007) 3043-49.

DOI: 10.1007/s12034-007-0008-7

Google Scholar

[23] A.A. Khan, A. Khan, Inamuddin, Preparation and characterization of a new organic-inorganic nano-composite poly-o-toluidine Th(IV) phosphate: its analytical applications as cation-exchanger and in making ion-selective electrode, Talanta 72 (2007).

DOI: 10.1016/j.talanta.2006.11.044

Google Scholar

[24] M.M.A. El-Latif, M.F. El-Kady. Developing and characterization of a new zirconium-vanadate ion exchanger and its novel inorganic-organic hybrid, J. Appl. Sci. Res. 4 (2008) 1-13.

Google Scholar

[25] H. Patel, U.A. Chudasma. A comparative study of proton transport properties of metal(IV) phosphates, J. Chem. Sci. 119, (2007) 35-40.

DOI: 10.1007/s12039-007-0006-8

Google Scholar

[26] B.C. Pan, Q. R. Zhang, W. Du, Q.J. Zhang. Selective removal of heavy metals from water by zirconium phosphate; behaviour and mechanism, Water Res. 41 (2007) 3103-3111.

DOI: 10.1016/j.watres.2007.03.004

Google Scholar

[27] K. Moosavi, S. Setayshi, M.G. Maragheh, S. Javadahmadi, M.R. Kardan, S. Nosrati. Synthesis and ion exchange properties of inorganic ion exchanger zirconium phosphate, J. Appl. Sci. 9 (2009) 2180-2184.

DOI: 10.3923/jas.2009.2180.2184

Google Scholar

[28] R. Thakkar, H. Patel, U. Chudasma. A comparative study of proton transport properties of zirconium phosphate and its metal exchanged phases, Bull. Mater. Sci. 30 (2007) 205-209.

DOI: 10.1007/s12034-007-0036-3

Google Scholar

[29] J.H. Jung. Preparation and characterization of mesoporous zirconium phosphates from alkyl phosphates, Micropor. Mesopor. Mat. 106 (2007) 49.

DOI: 10.1016/j.micromeso.2007.02.018

Google Scholar

[30] K.G. Varshney, A.H. Pandith, U. Gupta. Synthesis and characterization of zirconium aluminophosphate ; a new cation exchanger, Langmuir, 14 (1998) 7353-7358.

DOI: 10.1021/la970464j

Google Scholar

[31] K.G. Varshney, M.Z.A. Rafiquee, A. Somya, M. Drabik. Indian J. Chem. 45A (2006) 1856.

Google Scholar

[32] K.G. Varshney, M. Z. A. Rafiquee, A. Somya. Colloid Surf. A: Physiochem. Eng. Asp. 301 (2007) 224.

Google Scholar

[33] L.L. Schramm, E.N. Stasiuk, D.G. Marangoni. Annu. Rep. Prog. Chem., Sect. C. 99 (2003) 3.

DOI: 10.1039/b208499f

Google Scholar

[34] A. Talarposhti, T. Donelly, G.K. Anderson. Colour removal from simulated dye wastewater using a two-phase anaerobic packed bed reactor, Water Res. 35 (2001) 425.

DOI: 10.1016/s0043-1354(00)00280-3

Google Scholar

[35] V. Meshkov, L. Markovaska, M. Minchew, A. Rodrigues. Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Res. 35 (2001) 3357.

DOI: 10.1016/s0043-1354(01)00056-2

Google Scholar

[36] O. Yavuz, A.H. Aydin. Removal of direct dyes from aqueous solution using various adsorbents, Pol. J. Environ. Stud. 15(2006) 155-161.

Google Scholar

[37] F.C. Nachod, W. Wood. The reaction velocity of ion exchange, J. Am. Chem. Soc. 66 (1944) 1380-1384.

DOI: 10.1021/ja01236a050

Google Scholar

[38] S.A. Nabi, A. H. Shalla, A.M. Khan, S.A. Ganie. Synthesis, characterization and analytical applications of titanium (IV) molybdosilicate: a cation ion-exchanger, J. Colliod Surf. 203 (2007) 241-250.

DOI: 10.1016/j.colsurfa.2007.02.034

Google Scholar

[39] A. Nilchi, B. Maalek, A. Khanchi, M.G. Maragheh, A. Bagheri. Cerium (IV) molybdatecation exchanger: synthesis, properties and ion separation capabilities, Radiat. Phys. Chem. 75 (2006) 301-308.

DOI: 10.1016/j.radphyschem.2005.07.003

Google Scholar

[40] A.A. Khan, T. Akhtar. Preparation, physio-chemical characterization and electrical conductivity measurement studies of an organic-inorganic nano-composite cation exchanger : poly-o-toluidine Zr(IV) phosphate, Electrochim. Acta. 53 (2008).

DOI: 10.1016/j.electacta.2008.03.002

Google Scholar

[41] C. Duval. Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam. 315 (1963).

Google Scholar

[42] G. Alberti, U. Constantino, R. Millini, G. Perego, R. Vivan. Preparation, characterization and structure of α-zirconium hydrogen phosphate hemihydrates, J. Solid State Chem. 113 (1994) 289-295.

DOI: 10.1006/jssc.1994.1373

Google Scholar

[43] E.V. Bakhmotava, O. Zhiang, D. G. Medevdev, A. Clearfield. Cobalt phosphonates: an unusual cobalt polymeric phosphonate containing a clathratedphosphonate anion and a layered bisphosphonate , Inorg. Chem. 42 (2003)7046-7051.

DOI: 10.1021/ic0301425

Google Scholar

[44] H.C. Yang, K. Aoki, H.G. Hong, D.D. Sackett. Growth and characterization of metal(II) alkane bisphosphonate multilayer thin films on gold surfaces, J. Am. Soc. 115 (1993) 11855-11862.

DOI: 10.1021/ja00078a025

Google Scholar

[45] X. Xu, B. Zhou, J. Shen, X. Y. Ni, C. Xu, J. Q. Hou. The research of microstructure on ZrO2 photosensitive gels film by UV exposure, J. Mater. 19 (2005) 126-130.

Google Scholar

[46] P.T. Goodbole, A.D. Sawant. Removal of malachite green from aqueous solutions using immobilized Saccharomyces cerevisiae, J. Sci. Ind. Res. 65 (2006) 440-442.

Google Scholar

[47] S. Srivastav, R. Sinha, D. Roy. Toxicological effects of Malachite green, Aquat. Toxicol. 66 (2004) 319-329.

Google Scholar