[1]
D.V. Marinin, G.N. Brown, Studies of sorbent/ ion exchange materials for the removal of radioactive strontium from liquid radioactive waste and high hardness ground waters, Waste Manag. 20 (2000) 545-553.
DOI: 10.1016/s0956-053x(00)00017-9
Google Scholar
[2]
B. Preetha, C. Jonardanan, Ion exchange method for the detection of trace amounts of Mn2+ using nano cerium zirconium phosphate cation exchanger, Ion Exch. Lett. 3 (2010) 12-18.
Google Scholar
[3]
R. Chitrakar, S. Tezuka, A. Sonoda, K. Sakane, K. Ooi, T. Hirotsu, Selective adsorption of phosphate from sea water and waste water by amorphous zirconium hydroxide, J. ColliodInterf. Sci. 297 (2006) 426-433.
DOI: 10.1016/j.jcis.2005.11.011
Google Scholar
[4]
V.N. Lebedev, N.A. Mel'nik, A.V. Rudenko, Sorption of cesium on titanium and zirconium phosphates, Radiochemistry 45 (2003) 149-151.
Google Scholar
[5]
S. Rehman, N. Islam, S. Ahad, S.Z. Fatima, A.H. Pandith, Preparation and characterization of 5-sulphosalicylic acid dopedtetraethoxysilane composite ion-exchange material by sol–gel method, J. Hazard. Mater. 260 (2013) 313-322.
DOI: 10.1016/j.jhazmat.2013.05.036
Google Scholar
[6]
A. Naeem, S. Mustafa, N. Rehana, B. Dilara, S. Murtaza, The sorption of divalent metal ions on AlPO4, J. Colloid. Interf. 252(1) (2002)6-14.
DOI: 10.1006/jcis.2002.8425
Google Scholar
[7]
M.M. Abou-Mesalam, Applications of inorganic ion exchangers: II- adsorption of some heavy metal ions from their aqueous waste solutions using synthetic iron (III) titanates, Adsorption 10(2004) 1087-1092.
DOI: 10.1023/b:adso.0000024038.32712.18
Google Scholar
[8]
S.D. Ajagekar, Z.R. Turel, Selective adsorption and radiochemical separation of Sr(II) using zirconium phosphate ion exchanger, J. Ind. Council. Chem. 26 (2010) 187-189.
Google Scholar
[9]
M.A. Hafez, I.M. Kenway, M.A. Akl, R.R. Lshein, Preconcentration and separation of total mercury in environmental samples using chemically modified chloromethylated polystyrene – PAN, Talanta53 (2001)749.
DOI: 10.1016/s0039-9140(00)00524-5
Google Scholar
[10]
M. Nushad, R. Mitra, J. Raguvanshi, Use of Neutral Red modified strong acid cation exchange resin for separation of heavy metal ions, Ion Exch. Lett. 2 (2009) 31-34.
Google Scholar
[11]
L.S. Campbell, A. Chimedtsogzol, A. Dyer. Species sensitivity of zeolite minerals for uptake of mercury solutes, Mineral. Mag. 70 (2006) 361-371.
DOI: 10.1180/0026461067040341
Google Scholar
[12]
H. Zheng, H. Han, Y. Ma, H. Zheng, D Zheng, D. Liu, S. Liang. Adsorption characteristics of ammonium ion by Zeolite 13X, J. Hazard. Mater. 158 (2008) 577-584.
DOI: 10.1016/j.jhazmat.2008.01.115
Google Scholar
[13]
I. Khan, S.A. Siddiqui, A.A. Khan. Synthesis, characterization and ion exchange properties of a new and novel organic-inorganic, hybrid cation-exchanger: nylon-6, 6, Zr(IV) phosphate, Talanta. 71 (2007) 841.
DOI: 10.1016/j.talanta.2006.05.042
Google Scholar
[14]
K.G. Varshney, A.H. Pandith. Synthesis and ion exchange behavior of acrylonitrile based zirconium-phosphate ; a new hybrid ion-exchanger. J. Indian Chem. Soc. 78 (2001) 250-253.
Google Scholar
[15]
K.G. Varshney,V. Jain, A. Agrawal, S.C. Mojumdar. Pyridine based zirconium (IV) and tin (IV) phosphates as new and novel intercalated ion exchangers; synthesis, characterization and analytical applications, J. Therm. Calorim. 86 (2006) 609-621.
DOI: 10.1007/s10973-006-7716-x
Google Scholar
[16]
A.A. Khan, Inamuddin, Cation-exchange kinetics and electrical conductivity studies of an organic-inorganic, composite cation-exchanger : polypyrrole Th(IV) phosphate, J. Appl. Polym. Sci. 105 (2007) 2806 - 2815.
DOI: 10.1002/app.25183
Google Scholar
[17]
C.L. Chiang, R.C. Chang, Y.C. Chiu. Thermal stability and thermal degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/ silicon/ phosphorus by sol-gel method. Thermochim. Acta. 453 (2007) 97-104.
DOI: 10.1016/j.tca.2006.11.013
Google Scholar
[18]
H. Patel, A. Parikh, U. A. Chudasama. Comparative study of proton transport properties of metal (IV) tungstates and their organic derivatives, Bull. Mater. Sci. 28 (2005) 137-144.
DOI: 10.1007/bf02704233
Google Scholar
[19]
A.M. Khan, M. A. Asiri, N. Rub, N. Azum, A.S.P. Khan, I. Khan, P.K. Mondal. Review on composite cation exchanger as interdisciplinary materials in analytical chemistry, Int. J. Electrochem. Sci. 7 (2012) 3854-3902.
DOI: 10.1016/s1452-3981(23)19507-1
Google Scholar
[20]
R. Thomas. Synthesis, properties and analytical applications of titanium (IV) phosphor-sulphosalicylate - a new hybrid inorganic-organic ion exchanger, Ort. J. Chem. 24 (2008) 1139-1146.
Google Scholar
[21]
S.A. Nabi, A.H. Shalla. EDTA-stannic (IV) iodate : preparation, characterization and its analytical applications for metal content determination in real and synthetic samples, J. Porous Mater. 16 (2009) 587-597.
DOI: 10.1007/s10934-008-9236-5
Google Scholar
[22]
W.A. Siddiqui, S.A. Khan. Synthesis and characterization and ion exchange properties of zirconium (IV) tungstoiodophosphate – a new cation exchanger, Bull. Mater. Sci. (2007) 3043-49.
DOI: 10.1007/s12034-007-0008-7
Google Scholar
[23]
A.A. Khan, A. Khan, Inamuddin, Preparation and characterization of a new organic-inorganic nano-composite poly-o-toluidine Th(IV) phosphate: its analytical applications as cation-exchanger and in making ion-selective electrode, Talanta 72 (2007).
DOI: 10.1016/j.talanta.2006.11.044
Google Scholar
[24]
M.M.A. El-Latif, M.F. El-Kady. Developing and characterization of a new zirconium-vanadate ion exchanger and its novel inorganic-organic hybrid, J. Appl. Sci. Res. 4 (2008) 1-13.
Google Scholar
[25]
H. Patel, U.A. Chudasma. A comparative study of proton transport properties of metal(IV) phosphates, J. Chem. Sci. 119, (2007) 35-40.
DOI: 10.1007/s12039-007-0006-8
Google Scholar
[26]
B.C. Pan, Q. R. Zhang, W. Du, Q.J. Zhang. Selective removal of heavy metals from water by zirconium phosphate; behaviour and mechanism, Water Res. 41 (2007) 3103-3111.
DOI: 10.1016/j.watres.2007.03.004
Google Scholar
[27]
K. Moosavi, S. Setayshi, M.G. Maragheh, S. Javadahmadi, M.R. Kardan, S. Nosrati. Synthesis and ion exchange properties of inorganic ion exchanger zirconium phosphate, J. Appl. Sci. 9 (2009) 2180-2184.
DOI: 10.3923/jas.2009.2180.2184
Google Scholar
[28]
R. Thakkar, H. Patel, U. Chudasma. A comparative study of proton transport properties of zirconium phosphate and its metal exchanged phases, Bull. Mater. Sci. 30 (2007) 205-209.
DOI: 10.1007/s12034-007-0036-3
Google Scholar
[29]
J.H. Jung. Preparation and characterization of mesoporous zirconium phosphates from alkyl phosphates, Micropor. Mesopor. Mat. 106 (2007) 49.
DOI: 10.1016/j.micromeso.2007.02.018
Google Scholar
[30]
K.G. Varshney, A.H. Pandith, U. Gupta. Synthesis and characterization of zirconium aluminophosphate ; a new cation exchanger, Langmuir, 14 (1998) 7353-7358.
DOI: 10.1021/la970464j
Google Scholar
[31]
K.G. Varshney, M.Z.A. Rafiquee, A. Somya, M. Drabik. Indian J. Chem. 45A (2006) 1856.
Google Scholar
[32]
K.G. Varshney, M. Z. A. Rafiquee, A. Somya. Colloid Surf. A: Physiochem. Eng. Asp. 301 (2007) 224.
Google Scholar
[33]
L.L. Schramm, E.N. Stasiuk, D.G. Marangoni. Annu. Rep. Prog. Chem., Sect. C. 99 (2003) 3.
DOI: 10.1039/b208499f
Google Scholar
[34]
A. Talarposhti, T. Donelly, G.K. Anderson. Colour removal from simulated dye wastewater using a two-phase anaerobic packed bed reactor, Water Res. 35 (2001) 425.
DOI: 10.1016/s0043-1354(00)00280-3
Google Scholar
[35]
V. Meshkov, L. Markovaska, M. Minchew, A. Rodrigues. Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Res. 35 (2001) 3357.
DOI: 10.1016/s0043-1354(01)00056-2
Google Scholar
[36]
O. Yavuz, A.H. Aydin. Removal of direct dyes from aqueous solution using various adsorbents, Pol. J. Environ. Stud. 15(2006) 155-161.
Google Scholar
[37]
F.C. Nachod, W. Wood. The reaction velocity of ion exchange, J. Am. Chem. Soc. 66 (1944) 1380-1384.
DOI: 10.1021/ja01236a050
Google Scholar
[38]
S.A. Nabi, A. H. Shalla, A.M. Khan, S.A. Ganie. Synthesis, characterization and analytical applications of titanium (IV) molybdosilicate: a cation ion-exchanger, J. Colliod Surf. 203 (2007) 241-250.
DOI: 10.1016/j.colsurfa.2007.02.034
Google Scholar
[39]
A. Nilchi, B. Maalek, A. Khanchi, M.G. Maragheh, A. Bagheri. Cerium (IV) molybdatecation exchanger: synthesis, properties and ion separation capabilities, Radiat. Phys. Chem. 75 (2006) 301-308.
DOI: 10.1016/j.radphyschem.2005.07.003
Google Scholar
[40]
A.A. Khan, T. Akhtar. Preparation, physio-chemical characterization and electrical conductivity measurement studies of an organic-inorganic nano-composite cation exchanger : poly-o-toluidine Zr(IV) phosphate, Electrochim. Acta. 53 (2008).
DOI: 10.1016/j.electacta.2008.03.002
Google Scholar
[41]
C. Duval. Inorganic Thermogravimetric Analysis, Elsevier, Amsterdam. 315 (1963).
Google Scholar
[42]
G. Alberti, U. Constantino, R. Millini, G. Perego, R. Vivan. Preparation, characterization and structure of α-zirconium hydrogen phosphate hemihydrates, J. Solid State Chem. 113 (1994) 289-295.
DOI: 10.1006/jssc.1994.1373
Google Scholar
[43]
E.V. Bakhmotava, O. Zhiang, D. G. Medevdev, A. Clearfield. Cobalt phosphonates: an unusual cobalt polymeric phosphonate containing a clathratedphosphonate anion and a layered bisphosphonate , Inorg. Chem. 42 (2003)7046-7051.
DOI: 10.1021/ic0301425
Google Scholar
[44]
H.C. Yang, K. Aoki, H.G. Hong, D.D. Sackett. Growth and characterization of metal(II) alkane bisphosphonate multilayer thin films on gold surfaces, J. Am. Soc. 115 (1993) 11855-11862.
DOI: 10.1021/ja00078a025
Google Scholar
[45]
X. Xu, B. Zhou, J. Shen, X. Y. Ni, C. Xu, J. Q. Hou. The research of microstructure on ZrO2 photosensitive gels film by UV exposure, J. Mater. 19 (2005) 126-130.
Google Scholar
[46]
P.T. Goodbole, A.D. Sawant. Removal of malachite green from aqueous solutions using immobilized Saccharomyces cerevisiae, J. Sci. Ind. Res. 65 (2006) 440-442.
Google Scholar
[47]
S. Srivastav, R. Sinha, D. Roy. Toxicological effects of Malachite green, Aquat. Toxicol. 66 (2004) 319-329.
Google Scholar