[1]
Www. Wikipedia. org. https: /en. wikipedia. org/wiki/Sweet_potato.
Google Scholar
[2]
P.M. Ann, Tropical soils and fertilizer use. Intermediate Trop. Agric. Series. Longman Scientific and Tech., Ltd. UK, (1993).
Google Scholar
[3]
B.S. Antia, E.J. Akpan, P.A. Okon, I.U. Umoren, Nutritive and antinutritive evaluation of sweet potato leaves, J. Nutr. 5(2) (2006) 166-168.
Google Scholar
[4]
H.N. Abubakar, I.O. Olayiwola, S.A. Sanni, M.A. Idowu, Chemical composition of sweet potato (Ipomea batatas Lam) dishes as consumed in Kwara state, Nigeria, International Food Research Journal 17 (2010) 411-416.
DOI: 10.3923/pjn.2009.1894.1897
Google Scholar
[5]
J.J.M. Swinkels, Industrial starch chemistry, 8-24. AVEBE Brochure, Foxhol, the Netherlands, (1985).
Google Scholar
[6]
D.J. Manners, Recent developments in our understanding of amylopectin structure, Carbohydr. Polym. 11(1989)87-111.
Google Scholar
[7]
L. Anderson, Studies on starch structure and the differential properties of starch debranching enzymes. Doctoral thesis, Swedish University of Agricultural Sciences, Acta Universitatis Agriculturae Sueciae, Agraria 287, (2001).
Google Scholar
[8]
R. Parker, S.G. Ring, Aspects of the physical chemistry of starch, J. Cereal Sci. 34 (2001) 1-17.
Google Scholar
[9]
C. H. Imberty, S. Pérez, The double-helical nature of the crystalline part of A-starch, Journal of J. Mol. Biol. 201 (1988) 365-378.
Google Scholar
[10]
J.N. BeMiller, R.L. Whistler, Carbohydrates. In Food Chemistry ed. O. R. Fennema, Boca Raton, Fla.: CRC Press Taylor and Francis Group. pp.157-223, (1996).
Google Scholar
[11]
Z. Chen, H.A. Schols, A.G.J. Voragen, Physicochemical properties of starches obtained from three different varieties of Chinese sweet potatoes. J. Food Sci. 68 (2003) 431-437.
DOI: 10.1111/j.1365-2621.2003.tb05690.x
Google Scholar
[12]
A.C. Eliasson, M. Gudmundsson, Starch: Physicochemical and functional aspects. In Carbohydrates in food, ed. A. Eliasson, 363-449. New York: Marcel Dekker, Inc., (1996).
DOI: 10.1201/9781420015058.ch10
Google Scholar
[13]
J. Jane, Starch: structure and properties. In Chemical and Functional Properties of Food Saccharides. ed. P. Tomasik, 81-101. CRC Press: New York (2004).
Google Scholar
[14]
J.M.V. Blanshard, Starch Granule Structure and Function: A Physiochemical Approach, In Starch: Properties and Potential, ed. T. Galliard, 16-54. John Wiley and Sons: Brisbane (1987).
Google Scholar
[15]
H.F. Zobel, Molecules to granules: A comprehensive starch review. Starch/ Stärke. 40 (1988) 44-50.
DOI: 10.1002/star.19880400203
Google Scholar
[16]
D. Cooke, M.J. Gidley, Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition, Carbohydr. Res. 227(6) (1992) 103-112.
DOI: 10.1016/0008-6215(92)85063-6
Google Scholar
[17]
S. Hizukuri, Polymodal distribution of the chain lengths of amylopectins and its significance, Carbohydr. Res. 147 (1986) 342-3477.
DOI: 10.1016/s0008-6215(00)90643-8
Google Scholar
[18]
S. Hizukuri, T. Kaneko, Y. Takeda, Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules, Biocemical Biophysics Acta, 760 (1983)188-191.
DOI: 10.1016/0304-4165(83)90142-3
Google Scholar
[19]
J.A. Woolfe, Sweet Potato: An Untapped Food Resource. 1-5. Cambridge: Cambridge University Press (1992).
Google Scholar
[20]
Food and Agriculture Organization of the United Nations, FAOSTAT Statistics Database-Agriculture, Rome, Italy. Available online: www. fao. org. (2003).
Google Scholar
[21]
S.J. Tian, J.E., Rickard, J.M.V. Blanshard, Physicochemical properties of sweetpotato starch, J. Sci. Food Agr. 57 (1991) 459-91.
Google Scholar
[22]
Y. Takeda, N. Tokunaga, C. Takeda, S. Hizukuri, Physicochemical properties of sweet potato starches, Starch/ Stärke 38 (1986) 345-350.
DOI: 10.1002/star.19860381006
Google Scholar
[23]
F. Delpeuch, J.C. Favier, Characteristics of starches of tropical plants: action of alpha-amylase, swelling and solubility patterns, Annales de technologie agricole 29 (1980) 53-67.
Google Scholar
[24]
V. Rasper, Investigations on starches from major starch crops grown in Ghana. II Swelling and solubility patterns and amyloelastic susceptibility, J. Sci. Food Agr. 20 (1969) 642-646.
DOI: 10.1002/jsfa.2740201103
Google Scholar
[25]
S. Singh, C.S. Raina, A.S. Bawa, D.C. Saxena, Effect of Heat-Moisture Treatment and Acid Modification on Rheological, Textural and Differential Scanning Calorimetry Characteristics of Sweet potato Starch, J. Food Sci. 70 (2005) 374-378.
DOI: 10.1111/j.1365-2621.2005.tb11441.x
Google Scholar
[26]
A.O. Oladeyebe, A.A. Oshodi, A.A. Oladeyebe, Physicochemical properties of starches of sweetpotato (Ipomea batata) and red cocoyam (Colocasia esculenta) cormels, Pakistan Journal of Nutrition 8(4) (2009) 313-315.
DOI: 10.3923/pjn.2009.313.315
Google Scholar
[27]
G. Fleche, Chemical modification and degradation of starch. In Starch Conversion Technology, Eds. G.M. Van Beynum and J.A. Roel, 73-79. Dekker, New York, (1985).
Google Scholar
[28]
P. Colonna, A. Buleo, C. Mercier, Physically modified starches. In Starch: Properties and Potential Critical Reports on Applied Chemistry,T. Galliard, ed. 79–114). John Wiley and Sons, Chichester New York, (1987).
Google Scholar
[29]
J.F. Kennedy , C.A. White, Principles of immobilization of Enzyme, In Hand Book of Enzyme Biotechnology, ed. A. Wiseman, 147. 2nd Ed. Ellis Harwood, Chichester, (1985).
Google Scholar
[30]
J.M. Light, Modified Food Starches Why, What, Where and How Adapted from a presentation at the symposium on Modified Food Starches at AACC's, 74th Annual Meeting in Washington, DC (1989).
Google Scholar
[31]
J.N. BeMiller, Starch modification: challenges and prospects. Starch 49(1997)127-131.
DOI: 10.1002/star.19970490402
Google Scholar
[32]
R.N. Tharanthan, Starch- Value addition by modification, Critical Review Food Science and Nutrition 45 (2005) 371-84.
Google Scholar
[33]
J. Singh, L. Kaur, O.J. McCarthy, Factors influencing the physicochemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review, Food Hydrocolloids 21 (2007) 1-22.
DOI: 10.1016/j.foodhyd.2006.02.006
Google Scholar
[34]
W. Jarowenko, Modified Starches: Properties and Uses, ed. O. B. Wurzburg, 64-67. Boca Raton, FL: CRC Press (1996).
Google Scholar
[35]
J. Shuren, Production and use of modified starch and starch derivatives in China. In Cassava's Potential in Asia in the 21st Century: Present Situation and Future Research and Development Needs, eds. R.H. Howeler and S.L. Tan, 553-563. Proc. 6th Regional Workshop, held in Ho Chi Minh city, Vietnam, (2001).
Google Scholar
[36]
A.I. Yeh, S.L. Yeh, Some characteristics of hydroxypropylated and cross-linked rice starch. Journal of Cereal Chemistry 70(5) (1993) 596-601.
Google Scholar
[37]
K. Ogawa, V, Hirai, V Shimasaki, T. Yoshimur, S. Ono, S. Rengakuji, Y. Nakamura, I. Yamazaki, Simple determination method of degree of substitution for starch acetate, Bull. Chem. Soc. Jpn. 72 (1999) 2785-2790.
DOI: 10.1246/bcsj.72.2785
Google Scholar
[38]
N. Singh, D. Chawla, J. Singh, Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch; Food Chem. 86 (2003) 601-608.
DOI: 10.1016/j.foodchem.2003.10.008
Google Scholar
[39]
C.S. Raina, S. Singh, A.S. Bawa , D.C. Saxena, Some characteristics of acetylated, cross-linked and dual modified Indian rice starches, Eur. Food Res. Technol. 223 (2006) 561-570.
DOI: 10.1007/s00217-005-0239-z
Google Scholar
[40]
O.B. Wurzburg, Modified Starches: Properties and Uses, CRC, Press, Boca Raton, Florida, (1986).
DOI: 10.1002/pi.4980210117
Google Scholar
[41]
H. Liu, L. Ramsden, H. Corke, Physical properties and enzymatic digestibility of acetylated ae, wx, and normal maize starch, J. Carbohydr. Polym. 34 (1997) 283-289.
DOI: 10.1016/s0144-8617(97)00130-6
Google Scholar
[42]
N. Singh, N. Inouchi, K. Nishinari, Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize, Food Hydrocolloids 20 (2006) 923-935.
DOI: 10.1016/j.foodhyd.2005.09.009
Google Scholar
[43]
Food and Agriculture Organization of the United Nations (FAO), FAOSTAT Statistics Database-Agriculture, Rome, Italy. Available online: www. fao. org, (2003).
DOI: 10.2172/1329289
Google Scholar
[44]
P.A. Sandford, J. Baird, Industrial utilization of polysaccharides, In The Polysaccharides, ed. G.O. Aspinall, 411. Academic Press, New York (1983).
DOI: 10.1016/b978-0-12-065602-8.50012-1
Google Scholar
[45]
S. Wattanchant, K. Muhammad, D. Hashim, R.A. Rahman, Effect of cross-linking reagents and hydroxypropylation level on dual-modified sago starch properties, Food Chem. 80 (2003) 463-471.
DOI: 10.1016/s0308-8146(02)00314-x
Google Scholar
[46]
L. Kaur, J. Singh, N. Singh, Effect of glycerol monostearate onphysico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 19 (2005) 839-849.
DOI: 10.1016/j.foodhyd.2004.10.036
Google Scholar
[47]
P. Muhrbeck, A.C. Eliasson. Influence of the naturally occuring phosphate esters on the crystallinity of potato starch, Journal of Science and Food Agriculture 55 (1991) 13-18.
DOI: 10.1002/jsfa.2740550103
Google Scholar
[48]
T. Yoneya, K. Ishibashi, K. Hironaka, K. Yamamoto, Influence of cross-linked potato starch treated with POCl3 on DSC, rheological properties and granule size. Carbohydrate Polymers 53 (2003) 447-457.
DOI: 10.1016/s0144-8617(03)00143-7
Google Scholar
[49]
L.J. Copeland, H. Blazek, Salman, M.C. Tang, Form and functionality of starch, Journal of Food Hydrocolloids, 23 (2009) 1527-1534.
DOI: 10.1016/j.foodhyd.2008.09.016
Google Scholar
[50]
S. Jobling, Improved starch for food and industrial applications. Current. Opinion on Plant Biolology 7 (2004) 210-218.
Google Scholar
[51]
V. Sudhakar R.S. Singhal, P.R. Kulkarni, Effects of sucrose on starch-hydrocolloid interactions, Food Chemistry 52 (1995) 281-284.
DOI: 10.1016/0308-8146(95)92824-4
Google Scholar
[52]
C.E. Hall, 1972. The role of scraped surface heat exchangers in the food industry. Austrrlian Food Manufacture, 41: 11-12, 14.
Google Scholar
[53]
W.C. Yackel, C. Cox, Application of starch-based fat replacers, Food Technology 46 (1992) 146-148.
Google Scholar
[54]
K. Krogars, O. Antikainen, J. Heinämäki, N. Laitinen, J. Yliruusi, Tablet film-coating with amylose-rich maize starch, Eur. J. Pharm. Sci. 17 (2002) 23-30.
DOI: 10.1016/s0928-0987(02)00134-3
Google Scholar
[55]
A.C. Eliasson, Starch in food: structure, function and application, Cereal Chem. 3 (2004) 38.
Google Scholar
[56]
E.W. Wanjekeche, E.L. Keya, Using of fresh cassava and sweetpotato pulp in baking, Ecology of Food and Nutrirtio 33 (1995) 237-248.
DOI: 10.1080/03670244.1995.9991432
Google Scholar
[57]
S. Suzuki, Present status and prospect of starch utilization in Japan. Korean, J. Food Sci. Technol. 10 (1978) 423-430.
Google Scholar
[58]
J.A. Radley, Industrial Uses of Starch and Its Derivatives, pp.51-115. Applied Science Publishers Ltd, London, (1976).
Google Scholar
[59]
W.R. Van Volkenburgh, M.A. White, Overviews of biodegradable polumer and solid waste Issues, Tappi J. 76 (1993) 193-197.
Google Scholar
[60]
R.E. Hardenburg, Wax and Related Coatings for Horticultural Products. A Bibliography. Agriculture Research Service Bulletin 51, 15, United States Department of Agriculture, Washington, DC, (1997).
Google Scholar
[61]
N. Goutard, S. Gulibert, J.L. Cuq, Water and glycerol as plasticizers affect the mechanical and water vapour barrier properties of an edible wheat gluten film, J. Food Sci. 58 (1993) 206-211.
DOI: 10.1111/j.1365-2621.1993.tb03246.x
Google Scholar
[62]
I.G. Donhowe, O.R. Fennema, The effects of plasticizers on crystallinity, permeability, and mechanical properties of methyl-cellulose films, J. Food Process. Preserv. 17 (1993) 247-257.
DOI: 10.1111/j.1745-4549.1993.tb00729.x
Google Scholar
[63]
N. Laohakunjit, A. Noomhorm, Effect of Plasticizers on Mechanical and Barrier Properties of Rice Starch film, Starch 56(8) (2004) 348-356.
DOI: 10.1002/star.200300249
Google Scholar
[64]
R.J. Ashley, Permeability and plastics packaging. In Polymer Pernreabilily, ed. J . Comyn, 269-308. London: Elsevier Applied Science Publishers, Ltd, (1985).
Google Scholar
[65]
Y. Matveev, V. Grinberg, V. Tolstoguzov, The plasticizing effect of water on proteins, polysaccharides and their mixtures, Glassy state of biopolymers, foods and seeds, Food Hydrocolloids 14 (2000) 425-437.
DOI: 10.1016/s0268-005x(00)00020-5
Google Scholar
[66]
A.M. Hermansson, K. Svegmark, Developments in the understanding of starch functionality, Trends Food Sci. Technol. 7 (1996) 345-353.
DOI: 10.1016/s0924-2244(96)10036-4
Google Scholar
[67]
A. Rindlav-Westling, M. Stading, Gatenholm. P. Structure, mechanical and barrier properties of amylose and amylopectin films, Carbohydr. Polym. 36 (1998) 217-224.
DOI: 10.1016/s0144-8617(98)00025-3
Google Scholar
[68]
P. Forsell, R. Lahtinen, M. Lahelin, P. Myllarinen. Oxygen permeability of amylose and amylopectin films, Carbohydr. Polym. 37 (2002) 125-129.
Google Scholar
[69]
E. Walenta, H.P. Fink, P. Weigel, J. Ganster, Structure-Property Relationships in Extruded Starch, 1 Supermolecular Structure of Pea Amylose and Extruded Pea Amylose, Macromol. Mater. Eng. 286(8) (2001) 456-461.
DOI: 10.1002/1439-2054(200108)286:8<456::aid-mame456>3.0.co;2-z
Google Scholar
[70]
J.M. Krochta, E.A. Baldwin, M.O. Nisperos-Carriedo, Edible Coating and Films to Improve Food Quality. Technomic Pub Co., Lancaster, USA, (1994).
DOI: 10.1002/food.19950390427
Google Scholar
[71]
AOAC. Official Methods of Analysis. Association of official analytical chemists, Washington, D.C., U.S. A, (1995).
Google Scholar
[72]
M. Dubios, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356.
DOI: 10.1021/ac60111a017
Google Scholar
[73]
D.B. Wankhade, R.N. Tharanthan, Sesame (Sesamum indicum). Carbohydrates, Journal of Agriculture and Food Chemistry 21 (1976) 655-659.
Google Scholar
[74]
T. Vanna, B. Khajee, M. Thanachan, Characteristics of starch from water chestnut (Trapa bispinosa Roxb, J. Food Biochem. 29 (2005) 337-348.
DOI: 10.1111/j.1745-4514.2005.00010.x
Google Scholar
[75]
J. Scott, McGrance, J. Hugh, Cornell, Colin J. Rix, A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products, Starch 50 (1998) 158-163.
DOI: 10.1002/(sici)1521-379x(199804)50:4<158::aid-star158>3.0.co;2-7
Google Scholar
[76]
L. Wang, B. Xie, J. Shi, S. Xue, Q. Deng, Y. Wei, B. Tian, Physicochemical properties and structure of starches from Chinese rice cultivars, Food Hydrocolloids 24 (2010) 208-216.
DOI: 10.1016/j.foodhyd.2009.09.007
Google Scholar
[77]
K.S. Sandhu, N. Singh, S.T. Lim, A comparison of native and acid-thinned normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties, LWT-Swiss Society Food Science amd Technology 40 (2007) 1527-36.
DOI: 10.1016/j.lwt.2006.12.012
Google Scholar
[78]
R.J. Smith, Production and use of hypochlorite oxidized starches. In Starch Chemistry and Technology, eds. R.L. Whistler and E. F. Paschall, 620-625. Academic Press, New York, (1967).
Google Scholar
[79]
C.M.O. Müller, F. Yamashita, J.B. Laurindo, Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach, Carbohydr. Polym. 72 (2008).
DOI: 10.1016/j.carbpol.2007.07.026
Google Scholar
[80]
C. Oduro-Yeboah, P.N.T. Johnson, E. Sakyi-Dawson, A. Budu, Effect of processing procedures on the colorimetry and viscoelastic properties of cassava starch, flour and cassava-plantain fufu flour, International Food Research Journal 17 (2010).
Google Scholar
[81]
O.S. Lawal, Succinyl and acetyl starch derivatives of a hybrid maize: Physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry, Carbohydr. Res. 339 (2004) 2673-2682.
DOI: 10.1016/j.carres.2004.08.015
Google Scholar
[82]
M. Yusuph, R.F. Tester, R. Ansell, C.E. Snape, Composition and propertiesof starches extracted from tubers of different potato varieties grown under thesame environmental conditions, Food Chem. 82 (2003) 283-289.
DOI: 10.1016/s0308-8146(02)00549-6
Google Scholar
[83]
J. Singh, L. Kaur, N. Singh, Effect of acetylation on some properties of corn and potato starches, Food Chem. 56 (2004) 586-601.
DOI: 10.1002/star.200400293
Google Scholar
[84]
Z. González, E. Perez, Effect of acetylation on some properties of rice starch, Starch 54 (2002) 148-154.
DOI: 10.1002/1521-379x(200204)54:3/4<148::aid-star148>3.0.co;2-n
Google Scholar
[85]
K. Dzulkefly, S.Y. Koon, A. Kassim, A. Sharif, A.H. Abdullah, Chemical modification of SAGO starch by solventless esterification with fatty acid chlorides, The Malaysian Journal of Analytical Science 11 (2007) 395-399.
Google Scholar
[86]
C.G. Biliaderis, Physical characteristics, enzymatic digestibility, and structure of chemically modified smooth pea and waxy maize starches, J. Agric. Food. Chem. 30 (1982) 925-930.
DOI: 10.1021/jf00113a029
Google Scholar
[87]
D.L. Phillips, L. Huijum, P. Duohai, C. Harold, General application of raman spectroscopy for the determination of level of acetylation in modified starches, Journal of Cereal Chemistry 76 (1999) 439-443.
DOI: 10.1094/cchem.1999.76.3.439
Google Scholar
[88]
Bourtoom Edible films and coatings: characteristics and properties, Sweetpotato selections. Starch 50 (2008) 331-337.
Google Scholar
[89]
J.W. Lawton, Effect of starch type on the properties of starch containing films, Carbohydr. Polym. 29 (1996) 203-208.
DOI: 10.1016/0144-8617(96)00028-8
Google Scholar
[90]
Du Yumin, Xia Zuyong, Lu Rong, Blend film of Chitosan/Starch, Wuhan University Journal of Natural Science 2 (1997) 220-224.
DOI: 10.1007/bf02827836
Google Scholar
[91]
M. Koskinen, Effect of pretreatment on the film forming properties of potato and barley starch dispersions, Ind. Crops Prod. 5 (1996) 23-34.
DOI: 10.1016/0926-6690(95)00053-4
Google Scholar
[92]
N. Gontard, S. Guilbert, J.L. Cuq, Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology, J. Food Sci. 57 (1992) 190-195.
DOI: 10.1111/j.1365-2621.1992.tb05453.x
Google Scholar