Studies on Influence of Chemical Modification, Plasticizer and Starch Concentration on Some Characteristics of Biodegradable Film

Article Preview

Abstract:

Starch was isolated from sweet potato and the process was standardized. It was found that the treatment ‘T8’ containing (0.25% potassium meta-bisulphite (KMS) and 0.12% citric acid) had shown excellent and promising result so far as residual protein, yield, past clarity and colour of the isolated starch was concerned. Chemical modification of isolate sweet potato starch at 3% and 5% (w/v) levels was carried out by acetylation using vinyl acetate concentration (4 to 10 %) and dual-modification using propylene oxide at a specific level of 7% and adipic acid anhydride (0.05 to 0.12%). Biodegradable films were prepared from the isolated native and modified starches. Glycerol at levels such as (0.25g/g, 0.35g/g, and 0.45g/g) was used as a plasticizer in the film preparation. Thickness of bio-films increased with increase in glycerol and starch concentrations whereas solubility decreased with increase in starch concentration and modification levels. Water and acid solubility of films prepared from native starch were highest which decreased in the acetylated starch films and further decreased in cross-linked starch films. With increase in starch and glycerol concentration tensile and puncture strengths of bio-films increased. Dual-modified starch films had shown higher mechanical strength than acetylated starches. The biodegradability was higher for native bio-films followed by acetylated starch and least for dual-modified films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-156

Citation:

Online since:

February 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Www. Wikipedia. org. https: /en. wikipedia. org/wiki/Sweet_potato.

Google Scholar

[2] P.M. Ann, Tropical soils and fertilizer use. Intermediate Trop. Agric. Series. Longman Scientific and Tech., Ltd. UK, (1993).

Google Scholar

[3] B.S. Antia, E.J. Akpan, P.A. Okon, I.U. Umoren, Nutritive and antinutritive evaluation of sweet potato leaves, J. Nutr. 5(2) (2006) 166-168.

Google Scholar

[4] H.N. Abubakar, I.O. Olayiwola, S.A. Sanni, M.A. Idowu, Chemical composition of sweet potato (Ipomea batatas Lam) dishes as consumed in Kwara state, Nigeria, International Food Research Journal 17 (2010) 411-416.

DOI: 10.3923/pjn.2009.1894.1897

Google Scholar

[5] J.J.M. Swinkels, Industrial starch chemistry, 8-24. AVEBE Brochure, Foxhol, the Netherlands, (1985).

Google Scholar

[6] D.J. Manners, Recent developments in our understanding of amylopectin structure, Carbohydr. Polym. 11(1989)87-111.

Google Scholar

[7] L. Anderson, Studies on starch structure and the differential properties of starch debranching enzymes. Doctoral thesis, Swedish University of Agricultural Sciences, Acta Universitatis Agriculturae Sueciae, Agraria 287, (2001).

Google Scholar

[8] R. Parker, S.G. Ring, Aspects of the physical chemistry of starch, J. Cereal Sci. 34 (2001) 1-17.

Google Scholar

[9] C. H. Imberty, S. Pérez, The double-helical nature of the crystalline part of A-starch, Journal of J. Mol. Biol. 201 (1988) 365-378.

Google Scholar

[10] J.N. BeMiller, R.L. Whistler, Carbohydrates. In Food Chemistry ed. O. R. Fennema, Boca Raton, Fla.: CRC Press Taylor and Francis Group. pp.157-223, (1996).

Google Scholar

[11] Z. Chen, H.A. Schols, A.G.J. Voragen, Physicochemical properties of starches obtained from three different varieties of Chinese sweet potatoes. J. Food Sci. 68 (2003) 431-437.

DOI: 10.1111/j.1365-2621.2003.tb05690.x

Google Scholar

[12] A.C. Eliasson, M. Gudmundsson, Starch: Physicochemical and functional aspects. In Carbohydrates in food, ed. A. Eliasson, 363-449. New York: Marcel Dekker, Inc., (1996).

DOI: 10.1201/9781420015058.ch10

Google Scholar

[13] J. Jane, Starch: structure and properties. In Chemical and Functional Properties of Food Saccharides. ed. P. Tomasik, 81-101. CRC Press: New York (2004).

Google Scholar

[14] J.M.V. Blanshard, Starch Granule Structure and Function: A Physiochemical Approach, In Starch: Properties and Potential, ed. T. Galliard, 16-54. John Wiley and Sons: Brisbane (1987).

Google Scholar

[15] H.F. Zobel, Molecules to granules: A comprehensive starch review. Starch/ Stärke. 40 (1988) 44-50.

DOI: 10.1002/star.19880400203

Google Scholar

[16] D. Cooke, M.J. Gidley,  Loss of crystalline and molecular order during starch gelatinisation: Origin of the enthalpic transition, Carbohydr. Res. 227(6) (1992) 103-112.

DOI: 10.1016/0008-6215(92)85063-6

Google Scholar

[17] S. Hizukuri, Polymodal distribution of the chain lengths of amylopectins and its significance, Carbohydr. Res. 147 (1986) 342-3477.

DOI: 10.1016/s0008-6215(00)90643-8

Google Scholar

[18] S. Hizukuri, T. Kaneko, Y. Takeda, Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules, Biocemical Biophysics Acta, 760 (1983)188-191.

DOI: 10.1016/0304-4165(83)90142-3

Google Scholar

[19] J.A. Woolfe, Sweet Potato: An Untapped Food Resource. 1-5. Cambridge: Cambridge University Press (1992).

Google Scholar

[20] Food and Agriculture Organization of the United Nations, FAOSTAT Statistics Database-Agriculture, Rome, Italy. Available online: www. fao. org. (2003).

Google Scholar

[21] S.J. Tian, J.E., Rickard, J.M.V. Blanshard, Physicochemical properties of sweetpotato starch, J. Sci. Food Agr. 57 (1991) 459-91.

Google Scholar

[22] Y. Takeda, N. Tokunaga, C. Takeda, S. Hizukuri, Physicochemical properties of sweet potato starches, Starch/ Stärke 38 (1986) 345-350.

DOI: 10.1002/star.19860381006

Google Scholar

[23] F. Delpeuch, J.C. Favier, Characteristics of starches of tropical plants: action of alpha-amylase, swelling and solubility patterns, Annales de technologie agricole 29 (1980) 53-67.

Google Scholar

[24] V. Rasper, Investigations on starches from major starch crops grown in Ghana. II Swelling and solubility patterns and amyloelastic susceptibility, J. Sci. Food Agr. 20 (1969) 642-646.

DOI: 10.1002/jsfa.2740201103

Google Scholar

[25] S. Singh, C.S. Raina, A.S. Bawa, D.C. Saxena, Effect of Heat-Moisture Treatment and Acid Modification on Rheological, Textural and Differential Scanning Calorimetry Characteristics of Sweet potato Starch, J. Food Sci. 70 (2005) 374-378.

DOI: 10.1111/j.1365-2621.2005.tb11441.x

Google Scholar

[26] A.O. Oladeyebe, A.A. Oshodi, A.A. Oladeyebe, Physicochemical properties of starches of sweetpotato (Ipomea batata) and red cocoyam (Colocasia esculenta) cormels, Pakistan Journal of Nutrition 8(4) (2009) 313-315.

DOI: 10.3923/pjn.2009.313.315

Google Scholar

[27] G. Fleche, Chemical modification and degradation of starch. In Starch Conversion Technology, Eds. G.M. Van Beynum and J.A. Roel, 73-79. Dekker, New York, (1985).

Google Scholar

[28] P. Colonna, A. Buleo, C. Mercier, Physically modified starches. In Starch: Properties and Potential Critical Reports on Applied Chemistry,T. Galliard, ed. 79–114). John Wiley and Sons, Chichester New York, (1987).

Google Scholar

[29] J.F. Kennedy , C.A. White, Principles of immobilization of Enzyme, In Hand Book of Enzyme Biotechnology, ed. A. Wiseman, 147. 2nd Ed. Ellis Harwood, Chichester, (1985).

Google Scholar

[30] J.M. Light, Modified Food Starches Why, What, Where and How Adapted from a presentation at the symposium on Modified Food Starches at AACC's, 74th Annual Meeting in Washington, DC (1989).

Google Scholar

[31] J.N. BeMiller, Starch modification: challenges and prospects. Starch 49(1997)127-131.

DOI: 10.1002/star.19970490402

Google Scholar

[32] R.N. Tharanthan, Starch- Value addition by modification, Critical Review Food Science and Nutrition 45 (2005) 371-84.

Google Scholar

[33] J. Singh, L. Kaur, O.J. McCarthy, Factors influencing the physicochemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-A review, Food Hydrocolloids 21 (2007) 1-22.

DOI: 10.1016/j.foodhyd.2006.02.006

Google Scholar

[34] W. Jarowenko, Modified Starches: Properties and Uses, ed. O. B. Wurzburg, 64-67. Boca Raton, FL: CRC Press (1996).

Google Scholar

[35] J. Shuren, Production and use of modified starch and starch derivatives in China. In Cassava's Potential in Asia in the 21st Century: Present Situation and Future Research and Development Needs, eds. R.H. Howeler and S.L. Tan, 553-563. Proc. 6th Regional Workshop, held in Ho Chi Minh city, Vietnam, (2001).

Google Scholar

[36] A.I. Yeh, S.L. Yeh, Some characteristics of hydroxypropylated and cross-linked rice starch. Journal of Cereal Chemistry 70(5) (1993) 596-601.

Google Scholar

[37] K. Ogawa, V, Hirai, V Shimasaki, T. Yoshimur, S. Ono, S. Rengakuji, Y. Nakamura, I. Yamazaki, Simple determination method of degree of substitution for starch acetate, Bull. Chem. Soc. Jpn. 72 (1999) 2785-2790.

DOI: 10.1246/bcsj.72.2785

Google Scholar

[38] N. Singh, D. Chawla, J. Singh, Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch; Food Chem. 86 (2003) 601-608.

DOI: 10.1016/j.foodchem.2003.10.008

Google Scholar

[39] C.S. Raina,  S. Singh,  A.S. Bawa , D.C. Saxena, Some characteristics of acetylated, cross-linked and dual modified Indian rice starches, Eur. Food Res. Technol. 223 (2006) 561-570.

DOI: 10.1007/s00217-005-0239-z

Google Scholar

[40] O.B. Wurzburg, Modified Starches: Properties and Uses, CRC, Press, Boca Raton, Florida, (1986).

DOI: 10.1002/pi.4980210117

Google Scholar

[41] H. Liu, L. Ramsden, H. Corke, Physical properties and enzymatic digestibility of acetylated ae, wx, and normal maize starch, J. Carbohydr. Polym. 34 (1997) 283-289.

DOI: 10.1016/s0144-8617(97)00130-6

Google Scholar

[42] N. Singh, N. Inouchi, K. Nishinari, Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize, Food Hydrocolloids 20 (2006) 923-935.

DOI: 10.1016/j.foodhyd.2005.09.009

Google Scholar

[43] Food and Agriculture Organization of the United Nations (FAO), FAOSTAT Statistics Database-Agriculture, Rome, Italy. Available online: www. fao. org, (2003).

DOI: 10.2172/1329289

Google Scholar

[44] P.A. Sandford, J. Baird, Industrial utilization of polysaccharides, In The Polysaccharides, ed. G.O. Aspinall, 411. Academic Press, New York (1983).

DOI: 10.1016/b978-0-12-065602-8.50012-1

Google Scholar

[45] S. Wattanchant, K. Muhammad, D. Hashim, R.A. Rahman, Effect of cross-linking reagents and hydroxypropylation level on dual-modified sago starch properties, Food Chem. 80 (2003) 463-471.

DOI: 10.1016/s0308-8146(02)00314-x

Google Scholar

[46] L. Kaur, J. Singh, N. Singh, Effect of glycerol monostearate onphysico-chemical, thermal, rheological and noodle making properties of corn and potato starches. Food Hydrocolloids, 19 (2005) 839-849.

DOI: 10.1016/j.foodhyd.2004.10.036

Google Scholar

[47] P. Muhrbeck, A.C. Eliasson. Influence of the naturally occuring phosphate esters on the crystallinity of potato starch, Journal of Science and Food Agriculture 55 (1991) 13-18.

DOI: 10.1002/jsfa.2740550103

Google Scholar

[48] T. Yoneya, K. Ishibashi, K. Hironaka, K. Yamamoto, Influence of cross-linked potato starch treated with POCl3 on DSC, rheological properties and granule size. Carbohydrate Polymers 53 (2003) 447-457.

DOI: 10.1016/s0144-8617(03)00143-7

Google Scholar

[49] L.J. Copeland, H. Blazek, Salman, M.C. Tang, Form and functionality of starch, Journal of Food Hydrocolloids, 23 (2009) 1527-1534.

DOI: 10.1016/j.foodhyd.2008.09.016

Google Scholar

[50] S. Jobling, Improved starch for food and industrial applications. Current. Opinion on Plant Biolology 7 (2004) 210-218.

Google Scholar

[51] V. Sudhakar R.S. Singhal, P.R. Kulkarni, Effects of sucrose on starch-hydrocolloid interactions, Food Chemistry 52 (1995) 281-284.

DOI: 10.1016/0308-8146(95)92824-4

Google Scholar

[52] C.E. Hall, 1972. The role of scraped surface heat exchangers in the food industry. Austrrlian Food Manufacture, 41: 11-12, 14.

Google Scholar

[53] W.C. Yackel, C. Cox, Application of starch-based fat replacers, Food Technology 46 (1992) 146-148.

Google Scholar

[54] K. Krogars, O. Antikainen, J. Heinämäki, N. Laitinen, J. Yliruusi, Tablet film-coating with amylose-rich maize starch, Eur. J. Pharm. Sci. 17 (2002) 23-30.

DOI: 10.1016/s0928-0987(02)00134-3

Google Scholar

[55] A.C. Eliasson, Starch in food: structure, function and application, Cereal Chem. 3 (2004) 38.

Google Scholar

[56] E.W. Wanjekeche, E.L. Keya, Using of fresh cassava and sweetpotato pulp in baking, Ecology of Food and Nutrirtio 33 (1995) 237-248.

DOI: 10.1080/03670244.1995.9991432

Google Scholar

[57] S. Suzuki, Present status and prospect of starch utilization in Japan. Korean, J. Food Sci. Technol. 10 (1978) 423-430.

Google Scholar

[58] J.A. Radley, Industrial Uses of Starch and Its Derivatives, pp.51-115. Applied Science Publishers Ltd, London, (1976).

Google Scholar

[59] W.R. Van Volkenburgh, M.A. White, Overviews of biodegradable polumer and solid waste Issues, Tappi J. 76 (1993) 193-197.

Google Scholar

[60] R.E. Hardenburg, Wax and Related Coatings for Horticultural Products. A Bibliography. Agriculture Research Service Bulletin 51, 15, United States Department of Agriculture, Washington, DC, (1997).

Google Scholar

[61] N. Goutard, S. Gulibert, J.L. Cuq, Water and glycerol as plasticizers affect the mechanical and water vapour barrier properties of an edible wheat gluten film, J. Food Sci. 58 (1993) 206-211.

DOI: 10.1111/j.1365-2621.1993.tb03246.x

Google Scholar

[62] I.G. Donhowe, O.R. Fennema, The effects of plasticizers on crystallinity, permeability, and mechanical properties of methyl-cellulose films, J. Food Process. Preserv. 17 (1993) 247-257.

DOI: 10.1111/j.1745-4549.1993.tb00729.x

Google Scholar

[63] N. Laohakunjit, A. Noomhorm, Effect of Plasticizers on Mechanical and Barrier Properties of Rice Starch film, Starch 56(8) (2004) 348-356.

DOI: 10.1002/star.200300249

Google Scholar

[64] R.J. Ashley, Permeability and plastics packaging. In Polymer Pernreabilily, ed. J . Comyn, 269-308. London: Elsevier Applied Science Publishers, Ltd, (1985).

Google Scholar

[65] Y. Matveev, V. Grinberg, V. Tolstoguzov, The plasticizing effect of water on proteins, polysaccharides and their mixtures, Glassy state of biopolymers, foods and seeds, Food Hydrocolloids 14 (2000) 425-437.

DOI: 10.1016/s0268-005x(00)00020-5

Google Scholar

[66] A.M. Hermansson, K. Svegmark, Developments in the understanding of starch functionality, Trends Food Sci. Technol. 7 (1996) 345-353.

DOI: 10.1016/s0924-2244(96)10036-4

Google Scholar

[67] A. Rindlav-Westling, M. Stading, Gatenholm. P. Structure, mechanical and barrier properties of amylose and amylopectin films, Carbohydr. Polym. 36 (1998) 217-224.

DOI: 10.1016/s0144-8617(98)00025-3

Google Scholar

[68] P. Forsell, R. Lahtinen, M. Lahelin, P. Myllarinen. Oxygen permeability of amylose and amylopectin films, Carbohydr. Polym. 37 (2002) 125-129.

Google Scholar

[69] E. Walenta, H.P. Fink, P. Weigel, J. Ganster, Structure-Property Relationships in Extruded Starch, 1 Supermolecular Structure of Pea Amylose and Extruded Pea Amylose, Macromol. Mater. Eng. 286(8) (2001) 456-461.

DOI: 10.1002/1439-2054(200108)286:8<456::aid-mame456>3.0.co;2-z

Google Scholar

[70] J.M. Krochta, E.A. Baldwin, M.O. Nisperos-Carriedo,  Edible Coating and Films to Improve Food Quality. Technomic Pub Co., Lancaster, USA, (1994).

DOI: 10.1002/food.19950390427

Google Scholar

[71] AOAC. Official Methods of Analysis. Association of official analytical chemists, Washington, D.C., U.S. A, (1995).

Google Scholar

[72] M. Dubios, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350-356.

DOI: 10.1021/ac60111a017

Google Scholar

[73] D.B. Wankhade, R.N. Tharanthan, Sesame (Sesamum indicum). Carbohydrates, Journal of Agriculture and Food Chemistry 21 (1976) 655-659.

Google Scholar

[74] T. Vanna, B. Khajee, M. Thanachan, Characteristics of starch from water chestnut (Trapa bispinosa Roxb, J. Food Biochem. 29 (2005) 337-348.

DOI: 10.1111/j.1745-4514.2005.00010.x

Google Scholar

[75] J. Scott, McGrance, J. Hugh, Cornell, Colin J. Rix, A Simple and Rapid Colorimetric Method for the Determination of Amylose in Starch Products, Starch 50 (1998) 158-163.

DOI: 10.1002/(sici)1521-379x(199804)50:4<158::aid-star158>3.0.co;2-7

Google Scholar

[76] L. Wang, B. Xie, J. Shi, S. Xue, Q. Deng, Y. Wei, B. Tian, Physicochemical properties and structure of starches from Chinese rice cultivars, Food Hydrocolloids 24 (2010) 208-216.

DOI: 10.1016/j.foodhyd.2009.09.007

Google Scholar

[77] K.S. Sandhu, N. Singh, S.T. Lim, A comparison of native and acid-thinned normal and waxy corn starches: physicochemical, thermal, morphological and pasting properties, LWT-Swiss Society Food Science amd Technology 40 (2007) 1527-36.

DOI: 10.1016/j.lwt.2006.12.012

Google Scholar

[78] R.J. Smith, Production and use of hypochlorite oxidized starches. In Starch Chemistry and Technology, eds. R.L. Whistler and E. F. Paschall, 620-625. Academic Press, New York, (1967).

Google Scholar

[79] C.M.O. Müller, F. Yamashita, J.B. Laurindo, Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach, Carbohydr. Polym. 72 (2008).

DOI: 10.1016/j.carbpol.2007.07.026

Google Scholar

[80] C. Oduro-Yeboah, P.N.T. Johnson, E. Sakyi-Dawson, A. Budu, Effect of processing procedures on the colorimetry and viscoelastic properties of cassava starch, flour and cassava-plantain fufu flour, International Food Research Journal 17 (2010).

Google Scholar

[81] O.S. Lawal, Succinyl and acetyl starch derivatives of a hybrid maize: Physicochemical characteristics and retrogradation properties monitored by differential scanning calorimetry, Carbohydr. Res. 339 (2004) 2673-2682.

DOI: 10.1016/j.carres.2004.08.015

Google Scholar

[82] M. Yusuph, R.F. Tester, R. Ansell, C.E. Snape, Composition and propertiesof starches extracted from tubers of different potato varieties grown under thesame environmental conditions, Food Chem. 82 (2003) 283-289.

DOI: 10.1016/s0308-8146(02)00549-6

Google Scholar

[83] J. Singh, L. Kaur, N. Singh, Effect of acetylation on some properties of corn and potato starches, Food Chem. 56 (2004) 586-601.

DOI: 10.1002/star.200400293

Google Scholar

[84] Z. González, E. Perez, Effect of acetylation on some properties of rice starch, Starch 54 (2002) 148-154.

DOI: 10.1002/1521-379x(200204)54:3/4<148::aid-star148>3.0.co;2-n

Google Scholar

[85] K. Dzulkefly, S.Y. Koon, A. Kassim, A. Sharif, A.H. Abdullah, Chemical modification of SAGO starch by solventless esterification with fatty acid chlorides, The Malaysian Journal of Analytical Science 11 (2007) 395-399.

Google Scholar

[86] C.G. Biliaderis, Physical characteristics, enzymatic digestibility, and structure of chemically modified smooth pea and waxy maize starches, J. Agric. Food. Chem. 30 (1982) 925-930.

DOI: 10.1021/jf00113a029

Google Scholar

[87] D.L. Phillips, L. Huijum, P. Duohai, C. Harold, General application of raman spectroscopy for the determination of level of acetylation in modified starches, Journal of Cereal Chemistry 76 (1999) 439-443.

DOI: 10.1094/cchem.1999.76.3.439

Google Scholar

[88] Bourtoom Edible films and coatings: characteristics and properties, Sweetpotato selections. Starch 50 (2008) 331-337.

Google Scholar

[89] J.W. Lawton, Effect of starch type on the properties of starch containing films, Carbohydr. Polym. 29 (1996) 203-208.

DOI: 10.1016/0144-8617(96)00028-8

Google Scholar

[90] Du Yumin, Xia Zuyong, Lu Rong, Blend film of Chitosan/Starch, Wuhan University Journal of Natural Science 2 (1997) 220-224.

DOI: 10.1007/bf02827836

Google Scholar

[91] M. Koskinen, Effect of pretreatment on the film forming properties of potato and barley starch dispersions, Ind. Crops Prod. 5 (1996) 23-34.

DOI: 10.1016/0926-6690(95)00053-4

Google Scholar

[92] N. Gontard, S. Guilbert, J.L. Cuq, Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology, J. Food Sci. 57 (1992) 190-195.

DOI: 10.1111/j.1365-2621.1992.tb05453.x

Google Scholar