Biomedical Implants and Tissues: Status and Prospects

Article Preview

Abstract:

Treatments in healthcare utilizing implants, grafts, carriers and scaffolds divulge conspicuous and dire need of perfectly complementary materials which opens new vistas for research and other exploration in this field. The vast array and assemblage of various combinations of biomaterials have evinced immaculate promising applications in healthcare sector without excluding the fact that suitability and intricacy of the constructs is equally significant. This manuscript is an attempt to sort out the agglomeration of biomaterials as well as to provide a more explicit manifestation of the eminent giant leaps in the biomedical applications. Shortage of human organs essential for liver transplantation has led to the explorations in the tissue engineering arena. This manuscript specifically highlights most of the pertinent developments in the vicinity of liver tissue engineering utilizing polymers and composites. Tissue engineered products having live cells are less susceptible to immune rejection. Hence, this potent phenomenon which utilizes scaffolds of biomaterials has been discussed here thoroughly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-171

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.F. Williams, Definitions in Biomaterials, Elsevier Ed, Amsterdam, (1987).

Google Scholar

[2] S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nano materials: a review. Biotech Adv. 30 (2012) 512-523.

DOI: 10.1016/j.biotechadv.2011.09.005

Google Scholar

[3] A. Tan, L. Yildirimer, J. Rajadas, H. De La Pena, G. Pastorin, A. Seifalian, Quantum dots and carbon nanotubes in oncology: A review on emerging theranostic applications in nanomedicine. Nanomed. 6 (6) (2011)1101-1114.

DOI: 10.2217/nnm.11.64

Google Scholar

[4] V. Vlierberghe, P. Dubruel, E. Schacht, Biopolymer based hydrogels as scaffolds for tissue engineering applications: a review, Biomacromol. 12(5) (2011) 1387-1408.

DOI: 10.1021/bm200083n

Google Scholar

[5] F. Lyons, S. Partap, F.J. O'Brien. Part I: Scaffolds and surfaces, Technol Healthcare. 16 (2008) 305-17.

Google Scholar

[6] J.E. Babensee, A.G. Mikos, J.M. Anderson, L.V. Mclntire, Host response to tissue engineered devices, Adv. Drug Del. Rev. 33 (1998) 111-39.

DOI: 10.1016/s0169-409x(98)00023-4

Google Scholar

[7] G. Khang, S.J. Lee, M.S. Kin, H.B. Lee, Biomaterials: tissue engineering and scaffold. In Webster J(ed. ) Encyclopedia of medical devices and instrumentation, 2 (2006) 366-83.

Google Scholar

[8] M.S. Papkov, K. Agashi, A. Olaye, K. Shakesheff, A.J. Domb. Polymer carriers for drug delivery in tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 187-206.

DOI: 10.1016/j.addr.2007.04.001

Google Scholar

[9] H.J. Chung, T.G. Park, Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 249-59.

DOI: 10.1016/j.addr.2007.03.015

Google Scholar

[10] D.F. Williams, Cunningham. Materials in Clinical Dentistry, Oxford UK; Oxford University Press, (1979).

Google Scholar

[11] J.B. Park, Biomaterials Science and Engineering, New York: Plenum Press, (1984).

Google Scholar

[12] H. Hermawan, Mantovani. Degradable metallic biomaterials. The concept, current developments and future directions, Min Biotechnol. 21 (2009) 207-216.

Google Scholar

[13] H. Hermawan, D. Ramdan, J.R.P. Djuansjah Metals for Biomedical applications, In: Biomedical Engineering-From theory to applications, Reza Fazel-Rezai (Ed. ), (2011).

DOI: 10.5772/19033

Google Scholar

[14] H. Hermawan, H. Alandari, D. Mantovani, D. Dube, Iron-manganese: New class of degradable metallic biomaterials prepared by powder metallurgy, Powder Metal. 51(1) (2008) 38-45.

DOI: 10.1179/174329008x284868

Google Scholar

[15] E.P. Ivanova, K. Bazaka, R.J. Crawford, New functional biomaterials for medicine and healthcare, Pp 187-219, (2014).

DOI: 10.1533/9781782422662.187

Google Scholar

[16] B. J-L Moyen, P.J. Lahey, E.H. Weinberg, W.H. Harris, Effects on intact femora of dogs of the application and removal of metal plates, J Bone Joint Surg. 60A (7) (1978) 940-947.

DOI: 10.2106/00004623-197860070-00012

Google Scholar

[17] H.K. Uhthoff, M. Finnegan, The effects of metal plates on post-traumatic remodeling and bone mass, J Bone Joint Surg. 65B (1) (1983) 66-71.

DOI: 10.1302/0301-620x.65b1.6822605

Google Scholar

[18] P. Christel, A. Meunier, S. Leclercq, Ph. Bouquet, B. Buttazzoni, Development of carbon- carbon hip prostheses, J Biomed Materials Res: Applied Biomaterials. 21(A2) (1987) 191-218.

Google Scholar

[19] R. Huiskes, Some fundamental aspects of human- joint replacement. Acta Orthop Scand. (Suppl. ), 185, (1980).

Google Scholar

[20] E. Schneider, C. Kinast, J. Eulenberger, D. Wyder, G. Eskilsson, S.M. Perren. A comparative study of the initial stability of cementless hip prostheses, Clin Orthop. 248 (1989) 200-9.

DOI: 10.1097/00003086-198911000-00032

Google Scholar

[21] E. Whiteside, The effect of stem fit on bone hypertrophy and pain relief in cementless total hip arthroplasty. Clinical Orthoped 247 (1989) 138-47.

DOI: 10.1097/00003086-198910000-00023

Google Scholar

[22] P. Christel, L. Claes, S.A. Brown, Carbon reinforced composites in orthopedic surgery. In: Szycher M, editor. High performance Biomaterials: A comprehensive guide to Medical and Pharmaceutical Applications. Lancaster, (USA): Technomic, pp.499-518, (1991).

DOI: 10.1201/9780203752029-32

Google Scholar

[23] S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, Biomedical applications of polymer-composite materials: A review, Compos. Sci. Technol. 61 (2001)1189-1224.

DOI: 10.1016/s0266-3538(00)00241-4

Google Scholar

[24] B. Harris, The mechanical behavior of composite materials. In: The Mechanical Properties of Biological Materials, Cambridge, UK: Cambridge University Press, pp.37-74, (1980).

Google Scholar

[25] M. Lee Stuart, (Ed. ). Orthopedic composites. In: International Encyclopedia of composites, VCH Publishers, New York, Vol. 4, pp.74-87, (1991).

Google Scholar

[26] D. Philips, Characterization and development of 3D knitted composites. PhD. thesis, Katholieke University, Belgium, (1999).

Google Scholar

[27] G.W. Hastings, (Ed. ). Is there an ideal biomaterial for use as an implant for fracture fixation? Biodegradable implants in fracture fixation, 19-34 (1993).

Google Scholar

[28] P.L. Loh, K. Ravi, U.K. Ganesh, S. Ramakrishna, C.L. Chew, Moisture absorption of carbon fiber reinforced posts, J. Dental Res. 79(5) (2000) 1317.

Google Scholar

[29] T.W. Lin, A.A. Corvelli, C.G. Frondoza, J.C. Roberts, D.S. Hungerford, Glass peek composite promotes proliferation and osteocalcium production of human osteoblastic cells, J Biomed Mat. Res. 36(2) (1997) 37-144.

DOI: 10.1002/(sici)1097-4636(199708)36:2<137::aid-jbm1>3.0.co;2-l

Google Scholar

[30] A, Ignatius, K, Unterricker, K, Wenger, M, Richter, L, Claes, A new composite made of polyurethane and glass ceramic in a loaded implant model: a biomechanical and histological analysis, J Mat Science: Materials in Medicine. 8 (1997) 753-756.

DOI: 10.1023/a:1018508511787

Google Scholar

[31] L. Claes, M. Schultheiss, S. Wolf, H.J. Wilke, M. Arand, L. Kinzl, A new radiolucent system for vertebral body replacement: its stability in comparison to other systems, J Biomed Mat Res, Applied Biomats. 48 (1) (1999) 82-89.

DOI: 10.1002/(sici)1097-4636(1999)48:1<82::aid-jbm14>3.0.co;2-e

Google Scholar

[32] R, Feith, Side effects of acrylic cement, implanted to bone. Acta Orthop Scand (suppl): 161, (1975).

Google Scholar

[33] L.L. Hench, E.C. Ethridge, Biomaterials: An interfacial approach, New York: Academic press, (1982).

Google Scholar

[34] S. Kocvara, C.H. Kliment, J. Kubat, M. Stol, Z. Ott, J. Dvorak, Gel fabric prosthese of the ureter, J. Biomed. Mats Res. 1 (1967) 325-336.

DOI: 10.1002/jbm.820010304

Google Scholar

[35] S. Iannace, G. Sabatini, L. Ambrosio, L. Nicolais, Mechanical behavior of composite artificial tendons and ligaments, Biomats. 16(9) (1995) 675-680.

DOI: 10.1016/0142-9612(95)99693-g

Google Scholar

[36] L. Ambrosio, G. Carotenuto, L Nicolais. Composite Materials. Handbook of biomaterial properties, (J. Black, G. Hastings eds. ), London: Chapman and Hall, (1998a) pp.214-269.

DOI: 10.1007/978-1-4615-5801-9_18

Google Scholar

[37] L. Ambrosio, R. De Santis, S. Iannace, P.A. Netti, L. Nicolais, Viscoelastic behavior of composite ligament prostheses, J. Biomed. Mat. Res. 42(1) (1998b) 6-12.

DOI: 10.1002/(sici)1097-4636(199810)42:1<6::aid-jbm2>3.0.co;2-u

Google Scholar

[38] R. Ward, R. J Minns, Woven carbon fiber mesh patch versus Dacron mesh in the repair of experimental defects in the lumbar fascia of rabbits, Biomats. 20 (1989) 425-428.

DOI: 10.1016/0142-9612(89)90135-x

Google Scholar

[39] A.G.A. Coombes, C.D. Greenwood, J.J. Shorter, Plastic materials for external prostheses and ortheses. Human Biomaterials Applications (NJ) Humana Press Totowa, pp.215-255, (1996).

DOI: 10.1007/978-1-4757-2487-5_11

Google Scholar

[40] K.P. Baidya, S. Ramakrishna, M. Rahman, A. Ritchie, Quantitative radiographic analysis of fiber reinforced polymer composites, J. Biomater Appl. 15 (2001) 279-289.

DOI: 10.1106/bklq-e2yg-d2la-rg3r

Google Scholar

[41] J.F. Burke, I.V. Yannas, W.C. Quinby Jr, C.C. Bondoc, W.K. Jung. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn surgery, Ann. Surg. 194 (1981) 413-423.

DOI: 10.1097/00000658-198110000-00005

Google Scholar

[42] T. Garg, O. Singh, S. Arora, R.S.R. Murthy, Scaffold: A novel carrier for cell and drug delivery, Critical Reviews in Therapeutic Drug Carrier Systems 29(1) (2012) 1-63.

DOI: 10.1615/critrevtherdrugcarriersyst.v29.i1.10

Google Scholar

[43] K. Whang, Engineering bone regeneration with bioabsorbable scaffolds with novel architecture, Tissue Engin. 5 (1999) 35-51.

Google Scholar

[44] A.G. Mikos, A.J. Thorson, L.A. Czerwonka, Y. Bao, R. Langer, D.N. Winslow, J.P. Vacanti, Preparation and characterization of Poly (L-Lactic acid)foams, Polymer 35(5) (1994) 1068-1077.

DOI: 10.1016/0032-3861(94)90953-9

Google Scholar

[45] S.J. Hollister, R.D. Maddox, J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials 23 (20) (2002) 4095-4103.

DOI: 10.1016/s0142-9612(02)00148-5

Google Scholar

[46] K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, L.E. Weiss, In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed. Mater. Res. 47 (1999) 324-335.

DOI: 10.1002/(sici)1097-4636(19991205)47:3<324::aid-jbm6>3.0.co;2-y

Google Scholar

[47] S. Partap, J.A. Darr, I.U. Rehman, J.R. Jones, Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels, Adv Mater. 18 (2006) 501-504.

DOI: 10.1002/adma.200501423

Google Scholar

[48] T.H. Silva, A. Alves, B.M. Ferreira, J.M. Oliveira, L.L. Reys, R.J.F. Ferreira, R.A. Sousa, S.S. Silva, J.F. Mano, R.L. Reis, Materials of marine origin: a review on polymers and ceramics of biomedical interest, Int Mater Rev. 57(5) (2012).

DOI: 10.1179/1743280412y.0000000002

Google Scholar

[49] H. Ijima, K. Nakazawa, S. Koyama, M. Kaneko, T. Matsushita, T. Gion, K. Shirabe, M. Shumada, K. Takenaka, K. Sugimachi, K. Funatsu, Development of a hybrid artificial liver using a polyurethane foam/ hepatocyte- spheroid packed-bed module, Int. J. Artif. Org. 23 (2000).

DOI: 10.1177/039139880002300607

Google Scholar

[50] A. Pandit, R. Ashar, D. Feldman, A. Thompson, Investigation of acidic fibroblast growth factor delivered through a collagen scaffold for the treatment of full thickness skin defects in a rabbit model, Plast. Reconst. Surg. 101 (1998) 766-775.

DOI: 10.1097/00006534-199803000-00028

Google Scholar

[51] J. Mayer, E. Karamuk, T. Akaike, E. Wintermantel, Matrices for tissue engineering- scaffold structure for a bio-artificial liver support system, J Cont Release. 64 (2000) 81-90.

DOI: 10.1016/s0168-3659(99)00136-4

Google Scholar

[52] M.K. Smith, K.W. Riddle, D.J. Mooney, Delivery of hepatotrophic factors fails to enhance longer term survival of subcutaneously transplanted hepatocytes. Tissue Engg. 12 (2006) 235-244.

DOI: 10.1089/ten.2006.12.235

Google Scholar

[53] N. Alvarez, A. Soto-Gutierrez, Y. Chen, J. Caballero- Corbalan, W. Hassan, S. Kobayashi, Y. Kondo, M. Iwamuro, K. Yamamoto, E. Kondo, N. Tanaka, I.J. Fox, N. Kobayashi, Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice, J. Hepatol. 52 (2010).

DOI: 10.1016/j.jhep.2009.11.019

Google Scholar

[54] R. Ahmad, S. Ahmed, N.U. Khan, A. Hasnain, Operculina turpethum attenuates N'-nitrosodimethylamine induced toxic liver injury and clastogenicity in rats, Chem. Biol. Interact. 181 (2009) 145-153.

DOI: 10.1016/j.cbi.2009.06.021

Google Scholar

[55] A. Ahmad, R. Ahmad, Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches, Saudi. J. Gastroenterol. 18 (2012) 155-167.

DOI: 10.4103/1319-3767.96445

Google Scholar

[56] A. Ahmad, N. Afroz, U.D. Gupta, R. Ahmad, Vitamin B12 supplement alleviates N'-nitrosodimethylamine-induced hepatic fibrosis in rats, Pharm Biol. 52 (2014) 516-523.

DOI: 10.3109/13880209.2013.864682

Google Scholar

[57] A. Ahmad, R. Ahmad, Resveratrol mitigate structural changes and hepatic stellate cell activation in N'-Nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage, Chem. Bio. Interact. 221 (2014) 1-12.

DOI: 10.1016/j.cbi.2014.07.007

Google Scholar

[58] A. Chen, D.K. Thomas, L.L. Ong, R.E. Schwartz, T.R. Golub, S.N. Bhatia, Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci (USA) 108 (2011) 11842-11847.

DOI: 10.1073/pnas.1101791108

Google Scholar

[59] J. Bierwolf, J.M. Pollok, Liver tissue engineering. Tissue engineering using ceramics and polymers (second edition), pp.565-588, (2014).

DOI: 10.1533/9780857097163.3.565

Google Scholar

[60] A. Schwarz, T. Lindl, C. Höhneke, M. Stange, W. Pieken, Human autologous liver cell transplantation for the treatment of cirrhosis, Internet. J. Gastroenterol. 10(1) (2009) 1-5.

Google Scholar

[61] Z. Zhang, Z.H. Li, X.Z. Mao, W.C. Wang, Advances in bone repair with nano bio materials: mini review, Cytotechnology 33(5) (2011) 437-443.

Google Scholar