[1]
D.F. Williams, Definitions in Biomaterials, Elsevier Ed, Amsterdam, (1987).
Google Scholar
[2]
S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nano materials: a review. Biotech Adv. 30 (2012) 512-523.
DOI: 10.1016/j.biotechadv.2011.09.005
Google Scholar
[3]
A. Tan, L. Yildirimer, J. Rajadas, H. De La Pena, G. Pastorin, A. Seifalian, Quantum dots and carbon nanotubes in oncology: A review on emerging theranostic applications in nanomedicine. Nanomed. 6 (6) (2011)1101-1114.
DOI: 10.2217/nnm.11.64
Google Scholar
[4]
V. Vlierberghe, P. Dubruel, E. Schacht, Biopolymer based hydrogels as scaffolds for tissue engineering applications: a review, Biomacromol. 12(5) (2011) 1387-1408.
DOI: 10.1021/bm200083n
Google Scholar
[5]
F. Lyons, S. Partap, F.J. O'Brien. Part I: Scaffolds and surfaces, Technol Healthcare. 16 (2008) 305-17.
Google Scholar
[6]
J.E. Babensee, A.G. Mikos, J.M. Anderson, L.V. Mclntire, Host response to tissue engineered devices, Adv. Drug Del. Rev. 33 (1998) 111-39.
DOI: 10.1016/s0169-409x(98)00023-4
Google Scholar
[7]
G. Khang, S.J. Lee, M.S. Kin, H.B. Lee, Biomaterials: tissue engineering and scaffold. In Webster J(ed. ) Encyclopedia of medical devices and instrumentation, 2 (2006) 366-83.
Google Scholar
[8]
M.S. Papkov, K. Agashi, A. Olaye, K. Shakesheff, A.J. Domb. Polymer carriers for drug delivery in tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 187-206.
DOI: 10.1016/j.addr.2007.04.001
Google Scholar
[9]
H.J. Chung, T.G. Park, Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering, Adv. Drug Deliv. Rev. 59 (2007) 249-59.
DOI: 10.1016/j.addr.2007.03.015
Google Scholar
[10]
D.F. Williams, Cunningham. Materials in Clinical Dentistry, Oxford UK; Oxford University Press, (1979).
Google Scholar
[11]
J.B. Park, Biomaterials Science and Engineering, New York: Plenum Press, (1984).
Google Scholar
[12]
H. Hermawan, Mantovani. Degradable metallic biomaterials. The concept, current developments and future directions, Min Biotechnol. 21 (2009) 207-216.
Google Scholar
[13]
H. Hermawan, D. Ramdan, J.R.P. Djuansjah Metals for Biomedical applications, In: Biomedical Engineering-From theory to applications, Reza Fazel-Rezai (Ed. ), (2011).
DOI: 10.5772/19033
Google Scholar
[14]
H. Hermawan, H. Alandari, D. Mantovani, D. Dube, Iron-manganese: New class of degradable metallic biomaterials prepared by powder metallurgy, Powder Metal. 51(1) (2008) 38-45.
DOI: 10.1179/174329008x284868
Google Scholar
[15]
E.P. Ivanova, K. Bazaka, R.J. Crawford, New functional biomaterials for medicine and healthcare, Pp 187-219, (2014).
DOI: 10.1533/9781782422662.187
Google Scholar
[16]
B. J-L Moyen, P.J. Lahey, E.H. Weinberg, W.H. Harris, Effects on intact femora of dogs of the application and removal of metal plates, J Bone Joint Surg. 60A (7) (1978) 940-947.
DOI: 10.2106/00004623-197860070-00012
Google Scholar
[17]
H.K. Uhthoff, M. Finnegan, The effects of metal plates on post-traumatic remodeling and bone mass, J Bone Joint Surg. 65B (1) (1983) 66-71.
DOI: 10.1302/0301-620x.65b1.6822605
Google Scholar
[18]
P. Christel, A. Meunier, S. Leclercq, Ph. Bouquet, B. Buttazzoni, Development of carbon- carbon hip prostheses, J Biomed Materials Res: Applied Biomaterials. 21(A2) (1987) 191-218.
Google Scholar
[19]
R. Huiskes, Some fundamental aspects of human- joint replacement. Acta Orthop Scand. (Suppl. ), 185, (1980).
Google Scholar
[20]
E. Schneider, C. Kinast, J. Eulenberger, D. Wyder, G. Eskilsson, S.M. Perren. A comparative study of the initial stability of cementless hip prostheses, Clin Orthop. 248 (1989) 200-9.
DOI: 10.1097/00003086-198911000-00032
Google Scholar
[21]
E. Whiteside, The effect of stem fit on bone hypertrophy and pain relief in cementless total hip arthroplasty. Clinical Orthoped 247 (1989) 138-47.
DOI: 10.1097/00003086-198910000-00023
Google Scholar
[22]
P. Christel, L. Claes, S.A. Brown, Carbon reinforced composites in orthopedic surgery. In: Szycher M, editor. High performance Biomaterials: A comprehensive guide to Medical and Pharmaceutical Applications. Lancaster, (USA): Technomic, pp.499-518, (1991).
DOI: 10.1201/9780203752029-32
Google Scholar
[23]
S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, Biomedical applications of polymer-composite materials: A review, Compos. Sci. Technol. 61 (2001)1189-1224.
DOI: 10.1016/s0266-3538(00)00241-4
Google Scholar
[24]
B. Harris, The mechanical behavior of composite materials. In: The Mechanical Properties of Biological Materials, Cambridge, UK: Cambridge University Press, pp.37-74, (1980).
Google Scholar
[25]
M. Lee Stuart, (Ed. ). Orthopedic composites. In: International Encyclopedia of composites, VCH Publishers, New York, Vol. 4, pp.74-87, (1991).
Google Scholar
[26]
D. Philips, Characterization and development of 3D knitted composites. PhD. thesis, Katholieke University, Belgium, (1999).
Google Scholar
[27]
G.W. Hastings, (Ed. ). Is there an ideal biomaterial for use as an implant for fracture fixation? Biodegradable implants in fracture fixation, 19-34 (1993).
Google Scholar
[28]
P.L. Loh, K. Ravi, U.K. Ganesh, S. Ramakrishna, C.L. Chew, Moisture absorption of carbon fiber reinforced posts, J. Dental Res. 79(5) (2000) 1317.
Google Scholar
[29]
T.W. Lin, A.A. Corvelli, C.G. Frondoza, J.C. Roberts, D.S. Hungerford, Glass peek composite promotes proliferation and osteocalcium production of human osteoblastic cells, J Biomed Mat. Res. 36(2) (1997) 37-144.
DOI: 10.1002/(sici)1097-4636(199708)36:2<137::aid-jbm1>3.0.co;2-l
Google Scholar
[30]
A, Ignatius, K, Unterricker, K, Wenger, M, Richter, L, Claes, A new composite made of polyurethane and glass ceramic in a loaded implant model: a biomechanical and histological analysis, J Mat Science: Materials in Medicine. 8 (1997) 753-756.
DOI: 10.1023/a:1018508511787
Google Scholar
[31]
L. Claes, M. Schultheiss, S. Wolf, H.J. Wilke, M. Arand, L. Kinzl, A new radiolucent system for vertebral body replacement: its stability in comparison to other systems, J Biomed Mat Res, Applied Biomats. 48 (1) (1999) 82-89.
DOI: 10.1002/(sici)1097-4636(1999)48:1<82::aid-jbm14>3.0.co;2-e
Google Scholar
[32]
R, Feith, Side effects of acrylic cement, implanted to bone. Acta Orthop Scand (suppl): 161, (1975).
Google Scholar
[33]
L.L. Hench, E.C. Ethridge, Biomaterials: An interfacial approach, New York: Academic press, (1982).
Google Scholar
[34]
S. Kocvara, C.H. Kliment, J. Kubat, M. Stol, Z. Ott, J. Dvorak, Gel fabric prosthese of the ureter, J. Biomed. Mats Res. 1 (1967) 325-336.
DOI: 10.1002/jbm.820010304
Google Scholar
[35]
S. Iannace, G. Sabatini, L. Ambrosio, L. Nicolais, Mechanical behavior of composite artificial tendons and ligaments, Biomats. 16(9) (1995) 675-680.
DOI: 10.1016/0142-9612(95)99693-g
Google Scholar
[36]
L. Ambrosio, G. Carotenuto, L Nicolais. Composite Materials. Handbook of biomaterial properties, (J. Black, G. Hastings eds. ), London: Chapman and Hall, (1998a) pp.214-269.
DOI: 10.1007/978-1-4615-5801-9_18
Google Scholar
[37]
L. Ambrosio, R. De Santis, S. Iannace, P.A. Netti, L. Nicolais, Viscoelastic behavior of composite ligament prostheses, J. Biomed. Mat. Res. 42(1) (1998b) 6-12.
DOI: 10.1002/(sici)1097-4636(199810)42:1<6::aid-jbm2>3.0.co;2-u
Google Scholar
[38]
R. Ward, R. J Minns, Woven carbon fiber mesh patch versus Dacron mesh in the repair of experimental defects in the lumbar fascia of rabbits, Biomats. 20 (1989) 425-428.
DOI: 10.1016/0142-9612(89)90135-x
Google Scholar
[39]
A.G.A. Coombes, C.D. Greenwood, J.J. Shorter, Plastic materials for external prostheses and ortheses. Human Biomaterials Applications (NJ) Humana Press Totowa, pp.215-255, (1996).
DOI: 10.1007/978-1-4757-2487-5_11
Google Scholar
[40]
K.P. Baidya, S. Ramakrishna, M. Rahman, A. Ritchie, Quantitative radiographic analysis of fiber reinforced polymer composites, J. Biomater Appl. 15 (2001) 279-289.
DOI: 10.1106/bklq-e2yg-d2la-rg3r
Google Scholar
[41]
J.F. Burke, I.V. Yannas, W.C. Quinby Jr, C.C. Bondoc, W.K. Jung. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn surgery, Ann. Surg. 194 (1981) 413-423.
DOI: 10.1097/00000658-198110000-00005
Google Scholar
[42]
T. Garg, O. Singh, S. Arora, R.S.R. Murthy, Scaffold: A novel carrier for cell and drug delivery, Critical Reviews in Therapeutic Drug Carrier Systems 29(1) (2012) 1-63.
DOI: 10.1615/critrevtherdrugcarriersyst.v29.i1.10
Google Scholar
[43]
K. Whang, Engineering bone regeneration with bioabsorbable scaffolds with novel architecture, Tissue Engin. 5 (1999) 35-51.
Google Scholar
[44]
A.G. Mikos, A.J. Thorson, L.A. Czerwonka, Y. Bao, R. Langer, D.N. Winslow, J.P. Vacanti, Preparation and characterization of Poly (L-Lactic acid)foams, Polymer 35(5) (1994) 1068-1077.
DOI: 10.1016/0032-3861(94)90953-9
Google Scholar
[45]
S.J. Hollister, R.D. Maddox, J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints, Biomaterials 23 (20) (2002) 4095-4103.
DOI: 10.1016/s0142-9612(02)00148-5
Google Scholar
[46]
K.G. Marra, J.W. Szem, P.N. Kumta, P.A. DiMilla, L.E. Weiss, In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, J. Biomed. Mater. Res. 47 (1999) 324-335.
DOI: 10.1002/(sici)1097-4636(19991205)47:3<324::aid-jbm6>3.0.co;2-y
Google Scholar
[47]
S. Partap, J.A. Darr, I.U. Rehman, J.R. Jones, Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels, Adv Mater. 18 (2006) 501-504.
DOI: 10.1002/adma.200501423
Google Scholar
[48]
T.H. Silva, A. Alves, B.M. Ferreira, J.M. Oliveira, L.L. Reys, R.J.F. Ferreira, R.A. Sousa, S.S. Silva, J.F. Mano, R.L. Reis, Materials of marine origin: a review on polymers and ceramics of biomedical interest, Int Mater Rev. 57(5) (2012).
DOI: 10.1179/1743280412y.0000000002
Google Scholar
[49]
H. Ijima, K. Nakazawa, S. Koyama, M. Kaneko, T. Matsushita, T. Gion, K. Shirabe, M. Shumada, K. Takenaka, K. Sugimachi, K. Funatsu, Development of a hybrid artificial liver using a polyurethane foam/ hepatocyte- spheroid packed-bed module, Int. J. Artif. Org. 23 (2000).
DOI: 10.1177/039139880002300607
Google Scholar
[50]
A. Pandit, R. Ashar, D. Feldman, A. Thompson, Investigation of acidic fibroblast growth factor delivered through a collagen scaffold for the treatment of full thickness skin defects in a rabbit model, Plast. Reconst. Surg. 101 (1998) 766-775.
DOI: 10.1097/00006534-199803000-00028
Google Scholar
[51]
J. Mayer, E. Karamuk, T. Akaike, E. Wintermantel, Matrices for tissue engineering- scaffold structure for a bio-artificial liver support system, J Cont Release. 64 (2000) 81-90.
DOI: 10.1016/s0168-3659(99)00136-4
Google Scholar
[52]
M.K. Smith, K.W. Riddle, D.J. Mooney, Delivery of hepatotrophic factors fails to enhance longer term survival of subcutaneously transplanted hepatocytes. Tissue Engg. 12 (2006) 235-244.
DOI: 10.1089/ten.2006.12.235
Google Scholar
[53]
N. Alvarez, A. Soto-Gutierrez, Y. Chen, J. Caballero- Corbalan, W. Hassan, S. Kobayashi, Y. Kondo, M. Iwamuro, K. Yamamoto, E. Kondo, N. Tanaka, I.J. Fox, N. Kobayashi, Intramuscular transplantation of engineered hepatic tissue constructs corrects acute and chronic liver failure in mice, J. Hepatol. 52 (2010).
DOI: 10.1016/j.jhep.2009.11.019
Google Scholar
[54]
R. Ahmad, S. Ahmed, N.U. Khan, A. Hasnain, Operculina turpethum attenuates N'-nitrosodimethylamine induced toxic liver injury and clastogenicity in rats, Chem. Biol. Interact. 181 (2009) 145-153.
DOI: 10.1016/j.cbi.2009.06.021
Google Scholar
[55]
A. Ahmad, R. Ahmad, Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches, Saudi. J. Gastroenterol. 18 (2012) 155-167.
DOI: 10.4103/1319-3767.96445
Google Scholar
[56]
A. Ahmad, N. Afroz, U.D. Gupta, R. Ahmad, Vitamin B12 supplement alleviates N'-nitrosodimethylamine-induced hepatic fibrosis in rats, Pharm Biol. 52 (2014) 516-523.
DOI: 10.3109/13880209.2013.864682
Google Scholar
[57]
A. Ahmad, R. Ahmad, Resveratrol mitigate structural changes and hepatic stellate cell activation in N'-Nitrosodimethylamine-induced liver fibrosis via restraining oxidative damage, Chem. Bio. Interact. 221 (2014) 1-12.
DOI: 10.1016/j.cbi.2014.07.007
Google Scholar
[58]
A. Chen, D.K. Thomas, L.L. Ong, R.E. Schwartz, T.R. Golub, S.N. Bhatia, Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci (USA) 108 (2011) 11842-11847.
DOI: 10.1073/pnas.1101791108
Google Scholar
[59]
J. Bierwolf, J.M. Pollok, Liver tissue engineering. Tissue engineering using ceramics and polymers (second edition), pp.565-588, (2014).
DOI: 10.1533/9780857097163.3.565
Google Scholar
[60]
A. Schwarz, T. Lindl, C. Höhneke, M. Stange, W. Pieken, Human autologous liver cell transplantation for the treatment of cirrhosis, Internet. J. Gastroenterol. 10(1) (2009) 1-5.
Google Scholar
[61]
Z. Zhang, Z.H. Li, X.Z. Mao, W.C. Wang, Advances in bone repair with nano bio materials: mini review, Cytotechnology 33(5) (2011) 437-443.
Google Scholar