Fabrication, Characterization and Cytotoxicity of Guar Gum/Copper Oxide Nanocomposite: Efficient Removal of Organic Pollutant

Article Preview

Abstract:

Gaur gum/copper oxide (GG/CuO) nanocomposite was synthesized using sol-gel method. GG/CuO nanocomposite was characterized by techniques such as ultraviolet-visible (UV-visible) spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermo gravimetric analysis (TGA/DTA), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). TEM analysis revealed the size of the GG/CuO nanocomposite particles in the range of 20-50 nm. GG/CuO nanocomposite was used for degradation of malachite green dye under different conditions.The degradation of MG dye was recorded 89% under irradiationtime of 180 min. The antimicrobial activity of GG/CuO was also ascertained against S. aureus. The GG/CuO nanocomposite was non-toxic for the CHO-K1 cells, oral cancer cells KB and rat glioma C6 cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-102

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bhargava, S. Jahan, Biodegradation of Textile Wastewater, (2012), www. fibretofashion. com.

Google Scholar

[2] D. Pathania, G. Sharma, A. Kumar, M. Naushad, S. Kalia, A. Sarma, Z.A. Al Othman, Combined sorptional-photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite, Toxixol. & Envir. Chem. 97(5) (2015) 526-537.

DOI: 10.1080/02772248.2015.1050024

Google Scholar

[3] M.A. Kanjwal, M.A.N. Barrakat, F.A. Sheikh, S.J. Park, H.Y. Kim, Zinc oxide's hierarchical nanostructure and its photocatalytic properties, Macromol. Res. 18 (2010) 233-240.

Google Scholar

[4] M. Anbia, A. Ghaffari, Removal of malachite green from dye wastewater using mesoporous carbon adsorbent, J. Iran. Chem. Soc. 8 (2011) 67-76.

DOI: 10.1007/bf03254283

Google Scholar

[5] G. Werth, A. Boiteaux, The toxicity of the triphenylmethane dyestuff malachite green, as an uncoupler of oxidative phosphorylation in vivo and in vitro, Arch. Fur. Toxicol. 23 (1967) 82-103.

Google Scholar

[6] G. Werth, A. Boiteaux, Zur biologischen wirkung von malachitgrun, Arzn. Forsch. 18 (1968) 39.

Google Scholar

[7] S.J. Culp, L.R. Blankenship, D.F. Kusewitt D.R. Doerge L.T. Mulligan, F.A. Beland, Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice, Chem. Biol. Interact. 122 (1999).

DOI: 10.1016/s0009-2797(99)00119-2

Google Scholar

[8] X. Wang, G. Liu, G.Q. Lu, H.M. Cheng, Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods, Int. J. Hydrogen Energy. 35 (2010) 8199- 8205.

DOI: 10.1016/j.ijhydene.2009.12.091

Google Scholar

[9] T. He, H. Ma, Z. Zhou,W. Xu, F. Ren, Z. Shi, J. Wang, Preparation of ZnS–Fluoropolymer nanocomposites and its photocatalytic degradation of methylene blue, Polym. Degrad. Stab. 94(2009) 2251-2256.

DOI: 10.1016/j.polymdegradstab.2009.08.012

Google Scholar

[10] A. Franco, M.C. Neves, M.M.L.R. Carrott, M.H. Mendonc, M.I. Pereira, O.C. Monteiro, Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites, J. Hazard. Mater. 161 (2009) 545-550.

DOI: 10.1016/j.jhazmat.2008.03.133

Google Scholar

[11] M.S. Tamboli, M.V. Kulkarnia, R.H., Patil, W.N. Gadec, S.C. Navaleb, B.B. Kale, Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent, Coll. Surf. B. 92(2012).

DOI: 10.1016/j.colsurfb.2011.11.006

Google Scholar

[12] H. He, J. Zhu, N.J. Tao, L.A. Nagahara, I. Amlaniand, R. Tsui, A conducting polymer nanojunction switch,J. Am. Chem. Soc. 123 (2001) 7730-7731.

DOI: 10.1021/ja016264i

Google Scholar

[13] L.L. Beecraft, C.K. Ober, Nanocomposite materials for optical applications, Chem. Mater. 9(1997) 1302-1317.

Google Scholar

[14] R.L. Whistler, Industrial gums, McGraw-Hill Book Company, Second Edition (1973) 315-339.

Google Scholar

[15] S. Jana, A. Gandhi, K.K. Sen, S.K. Basu, Natural polymer and their application in drug delivery and biomedical field, J. Pharma. Sci. Tech. 1 (2011) 16-27.

Google Scholar

[16] T. Shaikh, S.S. Kumar, Pharmaceutical and pharmacological profile of guar gum: an overview, Int. J. Pharm. Pharm. Sci. 3 (2011) 38-40.

Google Scholar

[17] A. Giri, M. Bhowmick, S. Pal, A. Bandyopadhyay, Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium, Int. J. Biol. Macromol. 49 (2011) 885-93.

DOI: 10.1016/j.ijbiomac.2011.08.003

Google Scholar

[18] D. Hua, K. Cheuk, Z. Weining, W. Chen, X. Chang-fa, Low temperature preparation of nano TiO2 and its application as antibacterial agents, Trans. Nonferrous Met. Soc. China. 17(2007) s00–s703.

Google Scholar

[19] M. Naushad, Z.A. Al Othman, G. Sharma, Inamuddin, Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin. Ionics 21 (2014) 1453-1459.

DOI: 10.1007/s11581-014-1292-z

Google Scholar

[20] J. Song, Y. Jung, I. Lee, J. Jang, Fabrication of pDMAEMA-coated silica nanoparticles and their enhanced antibacterial activity, J. Colloid Interface Sci. 407 (2013) 205-209.

DOI: 10.1016/j.jcis.2013.06.016

Google Scholar

[21] Y.H. Chen, A. Lin, F.X. Gan, Improvement of polyacrylate coating by filling modified nano-TiO2, Appl. Surf. Sci. 252 (2006) 8635-8640.

DOI: 10.1016/j.apsusc.2005.11.083

Google Scholar

[22] K. Dowan, J. Minsuk, S. Jongchul, N. Kiho, H. Haksoo, B.K. Sher, UV-cured poly(urethane acrylate) composite films containing surface modified tetrapod ZnO whiskers. Compos. Sci. Technol. 75 (2013) 84-92.

DOI: 10.1016/j.compscitech.2012.12.007

Google Scholar

[23] A. Kumar, G. Sharma, M. Naushad, S. Thakur, SPION/β-cyclodextrin core-shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem. Eng. J. 280C (2015) 175-187.

DOI: 10.1016/j.cej.2015.05.126

Google Scholar

[24] L. Yan, P.R. Chang, P. Zheng, X. Ma, Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes, Carbohydr. Polym. 87(2012) 1919-(1924).

DOI: 10.1016/j.carbpol.2011.09.086

Google Scholar

[25] T. Surendra, M.K. Das, GUAR-GUM-Present Status and Applications, J. Pharm. Sci. Innov. 2: (2013) 24-28.

Google Scholar

[26] V. Singh, P. Kumari, S. Pandey, T. Narayan, Removal of chromium (VI) using poly(methylacrylate) functionalized guar gum, Bioresour. Technol. 100 (2009) 1977-(1982).

DOI: 10.1016/j.biortech.2008.10.034

Google Scholar

[27] V. Singh, S. Pandey, S.K. Singh, R. Sanghi, Removal of cadmium from aqueous solutions by adsorption using poly(acrylamide) modified guar gum–silica nanocomposites, Sep. Purif. Technol. 67(2009) 251-261.

DOI: 10.1016/j.seppur.2009.02.023

Google Scholar

[28] W. Wang, A. Wang, Synthesis and swelling propertiesof guar gum-g-poly(sodium acrylate)/Na-montmorillonite superabsorbentnanocomposite, J. Compos. Mat. 43 (2009) 2805-2819.

DOI: 10.1177/0021998309345319

Google Scholar

[29] V. Singh, S. Pandey, S.K. Singh, R. Sanghi, Efficient cadmium(II) removal from aqueous solution using microwave synthesized guar gum-graft-poly(ethylacrylate), Ind. Eng. Chem. Res. (2009) 48.

DOI: 10.1021/ie801416z

Google Scholar

[30] Y. Xi, C. Hu,P. Gao, R. Yang, X. Wang, B. Wan, Morphology and phase selective synthesis of CuxO (x = 1, 2) nanostructures and their catalytic degradation activity, Mater. Sci. Eng. B 166 (2010) 113-117.

DOI: 10.1016/j.mseb.2009.10.008

Google Scholar

[31] Y. He, A novel solid-stabilized emulsion approach to CuO nanostructured microspheres, Mater. Res. Bull. 42 (2007) 190-195.

DOI: 10.1016/j.materresbull.2006.05.020

Google Scholar

[32] J.P. Rupareli, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomaterialia. 4 (2008) 707-771.

DOI: 10.1016/j.actbio.2007.11.006

Google Scholar

[33] G. Ren, D. Hu, E.W.C. Cheng,M. A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents. 33 (2009) 587-590.

DOI: 10.1016/j.ijantimicag.2008.12.004

Google Scholar

[34] M.H. Beevi, S. Vignesh, T. Pandiyarajan, P. Jegatheesan, R.J.  Arthur,  N.V. Giridharan,B. Karthikeyan, Synthesis and antifungal studies on CuO nanostructures, Adv. Mater. Res. 488 (2012) 666-670.

DOI: 10.4028/www.scientific.net/amr.488-489.666

Google Scholar

[35] P. Huan, G. Feng, L. Qingyi, Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 9 (2009) 1076-1078.

Google Scholar

[36] K.P. Kuhn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz H.G. Sonntag,L. Erdinger, Disinfection of surfaces byphotocatalytic oxidation with titanium dioxide and UVA light, Chemosphere 53 (2003) 71-77.

DOI: 10.1016/s0045-6535(03)00362-x

Google Scholar

[37] Z.M. Siddiqi, D. Pathania, Studies on titanium(iv) tungstosilicate and titanium(iv) tungstophosphate. II. Separation and estimation of heavy metals from aquatic environments, Acta Chromatogr. 13 (2003) 172-185.

DOI: 10.1016/s0021-9673(02)01659-x

Google Scholar

[38] H. Liu, S. Sun, S. Liu, S. Wang, Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts, Chem. Eng. J. 214 (2013) 299-303.

DOI: 10.1016/j.cej.2012.10.058

Google Scholar

[39] H.K. Shon, S. Vignewaran, H.H. Ngo, J.H. Him, Chemical coupling of photocatalysis with flocculation and adsorption in the removal of organic matter, Water Res. 39 (2005) 2549-2558.

DOI: 10.1016/j.watres.2005.04.066

Google Scholar

[40] O. Gulnaz, A. Kaya,F. Matyar, B. Arikan, Sorption of basic dyes from aqueous solution by activated sludge,J. Hazard. Mater. 108 (2004) 183-188.

DOI: 10.1016/j.jhazmat.2004.02.012

Google Scholar

[41] C.W. Lin, B.J. Hwang, C.R. Lee, Methanol sensors based on the conductive polymer composites from polypyrrole and poly(vinyl al- cohol), Mater. Chem. Phys. 55(1998) 139-144.

DOI: 10.1016/s0254-0584(98)00087-x

Google Scholar

[42] L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of aqueous solution of amaranth azo dye on ACF under potentiostatic model, Dye Pigments. 76 (2008) 440-446.

DOI: 10.1016/j.dyepig.2006.09.013

Google Scholar

[43] D. Gupta, D. Singh, N.C. Kothiyal, A.K. Saini, V.P. Singh, D. Pathania, Synthesis of chitosan-g-poly (acrylamide)/ZnS nanocomposite forcontrolled drug delivery and antimicrobial activity. Inter. J. Bio. Macro. 74 (2015) 547-557.

DOI: 10.1016/j.ijbiomac.2015.01.008

Google Scholar

[44] M. Zhu, D. Meng, C. Wang, J. Di, G. Diao, Degradation of methylene blue with H2O2 over a cupric oxide nanosheet catalyst, Chinese. J. Catal. 34 (2013) 2125-2129.

DOI: 10.1016/s1872-2067(12)60717-7

Google Scholar

[45] S. Mine,K. Prasad, H. Izawa, K. Sonoda,J. Kadokawa, Preparation of guar gum-based functional materials using ionic liquid,J. Mater. Chem. 20 (2010) 9220-9225.

DOI: 10.1039/c0jm00984a

Google Scholar

[46] N. Ghobadi, Band gap determination using absorption spectrum fitting procedure, Inter. Nano. Lett. 3 (2010) 2.

DOI: 10.1186/2228-5326-3-2

Google Scholar

[47] C. Dual, Inorganic thermogravimetric analysis. Elsevier, Amsterdam. (1963) 330.

Google Scholar

[48] Y.M. Xu, C.H. Langford, UV or Visible-light induced degradation of X38 on TiO2 nanoparticles: the influence of adsorption, Langmuir. 17(2001) 897-902.

DOI: 10.1021/la001110m

Google Scholar

[49] V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, Nanocomposite pectin Zr (IV) selenotungstophosphate for adsorption/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system ,J. Ind. Eng. Chem. 21 (2015) 957-964.

DOI: 10.1016/j.jiec.2014.05.001

Google Scholar

[50] D. Pathania, G. Sharma, A. Kumar, N.C. Kothiyal, Fabrication of nanocomposite polyaniline zirconium (IV) silicophosphate for photocatalytic and antimicrobial activity, J. Alloys. Compd. 588 (2014) 668-675.

DOI: 10.1016/j.jallcom.2013.11.133

Google Scholar

[51] A.V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17, J. Hazard. Mater. 147 (2007) 906-913.

DOI: 10.1016/j.jhazmat.2007.01.107

Google Scholar

[52] N.M. Julkapli, S. Bagheri, S.B.A. Hamid, Recent Advances in heterogeneous photocatalytic decolorization of synthetic Dyes, Sci. World. J. 2014 (2014) 1-25.

DOI: 10.1155/2014/692307

Google Scholar

[53] C. Siriwong, N. Wetchakun, B. Inceesungvorn, D. Channei, T. Sanjerai, S. Phanichphant, Doped-metal oxide nanoparticles for use as photocatalysts, Prog. Cryst. Grow. Charact. Mater. 58 (2012) 145-163.

DOI: 10.1016/j.pcrysgrow.2012.02.004

Google Scholar

[54] L. Yong, G. Zhanqi, J Yuefei, H. Xiaobin, S. Cheng, Y. Shaogui, W. Lianhong, W. Qingeng, F. Die, Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways. J. Hazard. Mater. 285(2015) 127-36.

DOI: 10.1016/j.jhazmat.2014.11.041

Google Scholar

[55] G.M. Mansour, E. Hassan, Synthesis characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag, Arab. J. Chem. 7 (2014) 846-855.

DOI: 10.1016/j.arabjc.2013.11.011

Google Scholar