[1]
D. Bhargava, S. Jahan, Biodegradation of Textile Wastewater, (2012), www. fibretofashion. com.
Google Scholar
[2]
D. Pathania, G. Sharma, A. Kumar, M. Naushad, S. Kalia, A. Sarma, Z.A. Al Othman, Combined sorptional-photocatalytic remediation of dyes by polyaniline Zr(IV) selenotungstophosphate nanocomposite, Toxixol. & Envir. Chem. 97(5) (2015) 526-537.
DOI: 10.1080/02772248.2015.1050024
Google Scholar
[3]
M.A. Kanjwal, M.A.N. Barrakat, F.A. Sheikh, S.J. Park, H.Y. Kim, Zinc oxide's hierarchical nanostructure and its photocatalytic properties, Macromol. Res. 18 (2010) 233-240.
Google Scholar
[4]
M. Anbia, A. Ghaffari, Removal of malachite green from dye wastewater using mesoporous carbon adsorbent, J. Iran. Chem. Soc. 8 (2011) 67-76.
DOI: 10.1007/bf03254283
Google Scholar
[5]
G. Werth, A. Boiteaux, The toxicity of the triphenylmethane dyestuff malachite green, as an uncoupler of oxidative phosphorylation in vivo and in vitro, Arch. Fur. Toxicol. 23 (1967) 82-103.
Google Scholar
[6]
G. Werth, A. Boiteaux, Zur biologischen wirkung von malachitgrun, Arzn. Forsch. 18 (1968) 39.
Google Scholar
[7]
S.J. Culp, L.R. Blankenship, D.F. Kusewitt D.R. Doerge L.T. Mulligan, F.A. Beland, Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice, Chem. Biol. Interact. 122 (1999).
DOI: 10.1016/s0009-2797(99)00119-2
Google Scholar
[8]
X. Wang, G. Liu, G.Q. Lu, H.M. Cheng, Stable photocatalytic hydrogen evolution from water over ZnO–CdS core–shell nanorods, Int. J. Hydrogen Energy. 35 (2010) 8199- 8205.
DOI: 10.1016/j.ijhydene.2009.12.091
Google Scholar
[9]
T. He, H. Ma, Z. Zhou,W. Xu, F. Ren, Z. Shi, J. Wang, Preparation of ZnS–Fluoropolymer nanocomposites and its photocatalytic degradation of methylene blue, Polym. Degrad. Stab. 94(2009) 2251-2256.
DOI: 10.1016/j.polymdegradstab.2009.08.012
Google Scholar
[10]
A. Franco, M.C. Neves, M.M.L.R. Carrott, M.H. Mendonc, M.I. Pereira, O.C. Monteiro, Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites, J. Hazard. Mater. 161 (2009) 545-550.
DOI: 10.1016/j.jhazmat.2008.03.133
Google Scholar
[11]
M.S. Tamboli, M.V. Kulkarnia, R.H., Patil, W.N. Gadec, S.C. Navaleb, B.B. Kale, Nanowires of silver–polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent, Coll. Surf. B. 92(2012).
DOI: 10.1016/j.colsurfb.2011.11.006
Google Scholar
[12]
H. He, J. Zhu, N.J. Tao, L.A. Nagahara, I. Amlaniand, R. Tsui, A conducting polymer nanojunction switch,J. Am. Chem. Soc. 123 (2001) 7730-7731.
DOI: 10.1021/ja016264i
Google Scholar
[13]
L.L. Beecraft, C.K. Ober, Nanocomposite materials for optical applications, Chem. Mater. 9(1997) 1302-1317.
Google Scholar
[14]
R.L. Whistler, Industrial gums, McGraw-Hill Book Company, Second Edition (1973) 315-339.
Google Scholar
[15]
S. Jana, A. Gandhi, K.K. Sen, S.K. Basu, Natural polymer and their application in drug delivery and biomedical field, J. Pharma. Sci. Tech. 1 (2011) 16-27.
Google Scholar
[16]
T. Shaikh, S.S. Kumar, Pharmaceutical and pharmacological profile of guar gum: an overview, Int. J. Pharm. Pharm. Sci. 3 (2011) 38-40.
Google Scholar
[17]
A. Giri, M. Bhowmick, S. Pal, A. Bandyopadhyay, Polymer hydrogel from carboxymethyl guar gum and carbon nanotube for sustained trans-dermal release of diclofenac sodium, Int. J. Biol. Macromol. 49 (2011) 885-93.
DOI: 10.1016/j.ijbiomac.2011.08.003
Google Scholar
[18]
D. Hua, K. Cheuk, Z. Weining, W. Chen, X. Chang-fa, Low temperature preparation of nano TiO2 and its application as antibacterial agents, Trans. Nonferrous Met. Soc. China. 17(2007) s00–s703.
Google Scholar
[19]
M. Naushad, Z.A. Al Othman, G. Sharma, Inamuddin, Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin. Ionics 21 (2014) 1453-1459.
DOI: 10.1007/s11581-014-1292-z
Google Scholar
[20]
J. Song, Y. Jung, I. Lee, J. Jang, Fabrication of pDMAEMA-coated silica nanoparticles and their enhanced antibacterial activity, J. Colloid Interface Sci. 407 (2013) 205-209.
DOI: 10.1016/j.jcis.2013.06.016
Google Scholar
[21]
Y.H. Chen, A. Lin, F.X. Gan, Improvement of polyacrylate coating by filling modified nano-TiO2, Appl. Surf. Sci. 252 (2006) 8635-8640.
DOI: 10.1016/j.apsusc.2005.11.083
Google Scholar
[22]
K. Dowan, J. Minsuk, S. Jongchul, N. Kiho, H. Haksoo, B.K. Sher, UV-cured poly(urethane acrylate) composite films containing surface modified tetrapod ZnO whiskers. Compos. Sci. Technol. 75 (2013) 84-92.
DOI: 10.1016/j.compscitech.2012.12.007
Google Scholar
[23]
A. Kumar, G. Sharma, M. Naushad, S. Thakur, SPION/β-cyclodextrin core-shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem. Eng. J. 280C (2015) 175-187.
DOI: 10.1016/j.cej.2015.05.126
Google Scholar
[24]
L. Yan, P.R. Chang, P. Zheng, X. Ma, Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes, Carbohydr. Polym. 87(2012) 1919-(1924).
DOI: 10.1016/j.carbpol.2011.09.086
Google Scholar
[25]
T. Surendra, M.K. Das, GUAR-GUM-Present Status and Applications, J. Pharm. Sci. Innov. 2: (2013) 24-28.
Google Scholar
[26]
V. Singh, P. Kumari, S. Pandey, T. Narayan, Removal of chromium (VI) using poly(methylacrylate) functionalized guar gum, Bioresour. Technol. 100 (2009) 1977-(1982).
DOI: 10.1016/j.biortech.2008.10.034
Google Scholar
[27]
V. Singh, S. Pandey, S.K. Singh, R. Sanghi, Removal of cadmium from aqueous solutions by adsorption using poly(acrylamide) modified guar gum–silica nanocomposites, Sep. Purif. Technol. 67(2009) 251-261.
DOI: 10.1016/j.seppur.2009.02.023
Google Scholar
[28]
W. Wang, A. Wang, Synthesis and swelling propertiesof guar gum-g-poly(sodium acrylate)/Na-montmorillonite superabsorbentnanocomposite, J. Compos. Mat. 43 (2009) 2805-2819.
DOI: 10.1177/0021998309345319
Google Scholar
[29]
V. Singh, S. Pandey, S.K. Singh, R. Sanghi, Efficient cadmium(II) removal from aqueous solution using microwave synthesized guar gum-graft-poly(ethylacrylate), Ind. Eng. Chem. Res. (2009) 48.
DOI: 10.1021/ie801416z
Google Scholar
[30]
Y. Xi, C. Hu,P. Gao, R. Yang, X. Wang, B. Wan, Morphology and phase selective synthesis of CuxO (x = 1, 2) nanostructures and their catalytic degradation activity, Mater. Sci. Eng. B 166 (2010) 113-117.
DOI: 10.1016/j.mseb.2009.10.008
Google Scholar
[31]
Y. He, A novel solid-stabilized emulsion approach to CuO nanostructured microspheres, Mater. Res. Bull. 42 (2007) 190-195.
DOI: 10.1016/j.materresbull.2006.05.020
Google Scholar
[32]
J.P. Rupareli, A.K. Chatterjee, S.P. Duttagupta, S. Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, Acta Biomaterialia. 4 (2008) 707-771.
DOI: 10.1016/j.actbio.2007.11.006
Google Scholar
[33]
G. Ren, D. Hu, E.W.C. Cheng,M. A. Vargas-Reus, P. Reip, R.P. Allaker, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents. 33 (2009) 587-590.
DOI: 10.1016/j.ijantimicag.2008.12.004
Google Scholar
[34]
M.H. Beevi, S. Vignesh, T. Pandiyarajan, P. Jegatheesan, R.J. Arthur, N.V. Giridharan,B. Karthikeyan, Synthesis and antifungal studies on CuO nanostructures, Adv. Mater. Res. 488 (2012) 666-670.
DOI: 10.4028/www.scientific.net/amr.488-489.666
Google Scholar
[35]
P. Huan, G. Feng, L. Qingyi, Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 9 (2009) 1076-1078.
Google Scholar
[36]
K.P. Kuhn, I.F. Chaberny, K. Massholder, M. Stickler, V.W. Benz H.G. Sonntag,L. Erdinger, Disinfection of surfaces byphotocatalytic oxidation with titanium dioxide and UVA light, Chemosphere 53 (2003) 71-77.
DOI: 10.1016/s0045-6535(03)00362-x
Google Scholar
[37]
Z.M. Siddiqi, D. Pathania, Studies on titanium(iv) tungstosilicate and titanium(iv) tungstophosphate. II. Separation and estimation of heavy metals from aquatic environments, Acta Chromatogr. 13 (2003) 172-185.
DOI: 10.1016/s0021-9673(02)01659-x
Google Scholar
[38]
H. Liu, S. Sun, S. Liu, S. Wang, Graphene facilitated visible light photodegradation of methylene blue over titanium dioxide photocatalysts, Chem. Eng. J. 214 (2013) 299-303.
DOI: 10.1016/j.cej.2012.10.058
Google Scholar
[39]
H.K. Shon, S. Vignewaran, H.H. Ngo, J.H. Him, Chemical coupling of photocatalysis with flocculation and adsorption in the removal of organic matter, Water Res. 39 (2005) 2549-2558.
DOI: 10.1016/j.watres.2005.04.066
Google Scholar
[40]
O. Gulnaz, A. Kaya,F. Matyar, B. Arikan, Sorption of basic dyes from aqueous solution by activated sludge,J. Hazard. Mater. 108 (2004) 183-188.
DOI: 10.1016/j.jhazmat.2004.02.012
Google Scholar
[41]
C.W. Lin, B.J. Hwang, C.R. Lee, Methanol sensors based on the conductive polymer composites from polypyrrole and poly(vinyl al- cohol), Mater. Chem. Phys. 55(1998) 139-144.
DOI: 10.1016/s0254-0584(98)00087-x
Google Scholar
[42]
L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of aqueous solution of amaranth azo dye on ACF under potentiostatic model, Dye Pigments. 76 (2008) 440-446.
DOI: 10.1016/j.dyepig.2006.09.013
Google Scholar
[43]
D. Gupta, D. Singh, N.C. Kothiyal, A.K. Saini, V.P. Singh, D. Pathania, Synthesis of chitosan-g-poly (acrylamide)/ZnS nanocomposite forcontrolled drug delivery and antimicrobial activity. Inter. J. Bio. Macro. 74 (2015) 547-557.
DOI: 10.1016/j.ijbiomac.2015.01.008
Google Scholar
[44]
M. Zhu, D. Meng, C. Wang, J. Di, G. Diao, Degradation of methylene blue with H2O2 over a cupric oxide nanosheet catalyst, Chinese. J. Catal. 34 (2013) 2125-2129.
DOI: 10.1016/s1872-2067(12)60717-7
Google Scholar
[45]
S. Mine,K. Prasad, H. Izawa, K. Sonoda,J. Kadokawa, Preparation of guar gum-based functional materials using ionic liquid,J. Mater. Chem. 20 (2010) 9220-9225.
DOI: 10.1039/c0jm00984a
Google Scholar
[46]
N. Ghobadi, Band gap determination using absorption spectrum fitting procedure, Inter. Nano. Lett. 3 (2010) 2.
DOI: 10.1186/2228-5326-3-2
Google Scholar
[47]
C. Dual, Inorganic thermogravimetric analysis. Elsevier, Amsterdam. (1963) 330.
Google Scholar
[48]
Y.M. Xu, C.H. Langford, UV or Visible-light induced degradation of X38 on TiO2 nanoparticles: the influence of adsorption, Langmuir. 17(2001) 897-902.
DOI: 10.1021/la001110m
Google Scholar
[49]
V.K. Gupta, G. Sharma, D. Pathania, N.C. Kothiyal, Nanocomposite pectin Zr (IV) selenotungstophosphate for adsorption/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system ,J. Ind. Eng. Chem. 21 (2015) 957-964.
DOI: 10.1016/j.jiec.2014.05.001
Google Scholar
[50]
D. Pathania, G. Sharma, A. Kumar, N.C. Kothiyal, Fabrication of nanocomposite polyaniline zirconium (IV) silicophosphate for photocatalytic and antimicrobial activity, J. Alloys. Compd. 588 (2014) 668-675.
DOI: 10.1016/j.jallcom.2013.11.133
Google Scholar
[51]
A.V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17, J. Hazard. Mater. 147 (2007) 906-913.
DOI: 10.1016/j.jhazmat.2007.01.107
Google Scholar
[52]
N.M. Julkapli, S. Bagheri, S.B.A. Hamid, Recent Advances in heterogeneous photocatalytic decolorization of synthetic Dyes, Sci. World. J. 2014 (2014) 1-25.
DOI: 10.1155/2014/692307
Google Scholar
[53]
C. Siriwong, N. Wetchakun, B. Inceesungvorn, D. Channei, T. Sanjerai, S. Phanichphant, Doped-metal oxide nanoparticles for use as photocatalysts, Prog. Cryst. Grow. Charact. Mater. 58 (2012) 145-163.
DOI: 10.1016/j.pcrysgrow.2012.02.004
Google Scholar
[54]
L. Yong, G. Zhanqi, J Yuefei, H. Xiaobin, S. Cheng, Y. Shaogui, W. Lianhong, W. Qingeng, F. Die, Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways. J. Hazard. Mater. 285(2015) 127-36.
DOI: 10.1016/j.jhazmat.2014.11.041
Google Scholar
[55]
G.M. Mansour, E. Hassan, Synthesis characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag, Arab. J. Chem. 7 (2014) 846-855.
DOI: 10.1016/j.arabjc.2013.11.011
Google Scholar