Electrical Conductivity, Dielectric, Modulus and Optical Studies of Ag2SO4 and TiO2 Composite Solid Electrolytes

Article Preview

Abstract:

Composite solid electrolytes of the molecular formula (1-x) Ag2SO4 and x TiO2 have been prepared by solid state reaction method. The prepared materials were characterized by various techniques such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric-diffrential thermal analysis (TG-DTA) and scanning electron microscopy (SEM). A sharp increase of conductivity was found in the Arrhenius plot at 693 K due to the β →α phase transition, which is slowed down with the addition of TiO2 particles. The composition x=0.3 shows the maximum conductivity σ = 12.31 S cm-1 at 500 °C. The temperature dependent modulus values involve single type of conduction mechanism over the entire range of temperatures. The optical band gap energy for the pure Ag2SO4 is found to be 4.79 eV, which has decreased with the amount of TiO2 contents because of the defects and changes in local lattice symmetry of the composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

76-87

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.C. Agrawal, R.K. Gupta, Studies on ionic transport properties of a new Ag+ ion conducting composite electrolyte system (1−x)[0·75 AgI: 0·25 AgCl]: xSnO2, Bull. Mater. Sci. 19 (1996) 573-579.

DOI: 10.1007/bf02744830

Google Scholar

[2] N.F. Uvarov, Composite solid electrolytes: recent advances and design strategies, J. Solid State Electrochem. 15 (2011) 367-389.

DOI: 10.1007/s10008-008-0739-4

Google Scholar

[3] Z. Li, Impedance analysis and protonic conduction mechanism in RbH2PO4/SiO2 composite systems, Electrochim. Acta 55 (2010) 7298-7304.

DOI: 10.1016/j.electacta.2010.07.006

Google Scholar

[4] J. Maier, Defect chemistry in heterogeneous systems, Solid State Ionics 75 (1995) 139-145.

DOI: 10.1016/0167-2738(94)00222-e

Google Scholar

[5] L. Fan, Y. Ma, X. Wang, M. Singh, B. Zhu, Understanding the electrochemical mechanism of the core–shell ceria–LiZnO nanocomposite in a low temperature solid oxide fuel cell, J. Mater. Chem. A. 2 (2014) 5399-5407.

DOI: 10.1039/c3ta14098a

Google Scholar

[6] H. Yamada, I. Moriguchi, T. Kudo, Nano-structured Li-ionic conductive composite solid electrolyte synthesized by using mesoporous SiO2, Solid State Ionics 176 (2005) 945-953.

DOI: 10.1016/j.ssi.2004.11.013

Google Scholar

[7] V.G. Ponomareva, G.V. Lavrova, Influence of dispersed TiO2 on protonic conductivity of CsHSO4, Solid State Ionics106 (1998) 137-141.

DOI: 10.1016/s0167-2738(97)00482-7

Google Scholar

[8] N.F. Uvarov, B.B. Bokhonov, V.P. Isupov, E.F. Hairetdinov, Nanocomposite ionic conductors in the Li2SO4. Al2O3 system, Solid State Ionics 74 (1994) 15-27.

DOI: 10.1016/0167-2738(94)90432-4

Google Scholar

[9] K. Miyazaki, Y. Kato, T. Matsui, S. Hayashi, Y. Iriyama, T. Fukutsuka, T. Abe, Z. Ogumi, Formation of fuzzy, phases with high proton conductivities in the composites of polyphosphoric acid and metal oxide nanoparticles, Phys. Chem. Chem. Phys. 14 (2012).

DOI: 10.1039/c2cp41612c

Google Scholar

[10] N.F. Uvarov , P. Vanek , M. Savinov , V. Zelezny , V. Studnicka , J. Petzelt, Percolation effect, thermodynamic properties of AgI and interface phases in AgI–Al2O3 composites, Solid State Ionics 127 (2000) 253-267.

DOI: 10.1016/s0167-2738(99)00288-x

Google Scholar

[11] F. Fujishiro, S. Mochizuki, The interfacial effect on ionic conduction of AgI–anatase TiO2 composites, Solid State Ionics 180 (2009) 497-500.

DOI: 10.1016/j.ssi.2008.12.012

Google Scholar

[12] K. Singh, J. Randhawa, P. Khadakkar, S.S. Bhoga, Synthesis and characterization of Ag2SO4–ABO3 (A=Li/Ba and B=Nb/Ti) heterogeneous solid electrolyte systems, Solid State Ionics 126 (1999) 47-53.

DOI: 10.1016/s0167-2738(99)00120-4

Google Scholar

[13] D.P. Singh, K. Shahi, K.K. Kar, Scaling behavior and nearly constant loss effect in AgI–LiPO3 composite glasses, Solid State Ionics 231 (2013) 102-108.

DOI: 10.1016/j.ssi.2012.10.025

Google Scholar

[14] K. Singh, S.M. Pande, S.W. Anwane, S.S. Bhoga, A study of iso- and alio-valent cation doped Ag2SO4 solid electrolyte, Appl. Phys. A. 66 (1998) 205-215.

DOI: 10.1007/s003390050657

Google Scholar

[15] N.F. Uvarov, M.C.R. Shastry, K.J. Rao, Structure and ionic transport in Al2O3 containing composites, Rev. Solid State Sci. 4 (1990) 61-67.

Google Scholar

[16] N.F. Uvaro, E.F. Hairetdinov, I.V. Skobelev, Composite solid electrolytes MeNO3-Al2O3 (Me = Li, Na, K), Solid State Ionics 86-88 (1996) 577-580.

DOI: 10.1016/0167-2738(96)00208-1

Google Scholar

[17] M.C.R. Shastry, K.J. Rao, Structure and electrochemistry of LixMnyNi1−yO2, Solid State Ionics 51 (1992) 311-318.

Google Scholar

[18] S.A. Suthanthiraraj, R. Sarumathi, Electrical and Structural study of New Antimony Iodide doped Silver Sulphate Electrolyte, Ionics 19(8) (2013) 1145-1153.

DOI: 10.1007/s11581-012-0826-5

Google Scholar

[19] M.S. Nawaz, Rafiuddin, Ionic conduction and effect of cation doping in Tl4HgI6, Ionics 13 (2007) 35-40.

DOI: 10.1007/s11581-007-0069-z

Google Scholar

[20] B. Tareev, Physics of Dielectric Materials, MIR Publications, Moscow (1979).

Google Scholar

[21] S.G. Ting-Kuo Fey, R.F. Shiu, V Subramanian, C.L. Chen, The effect of varying the acid to metal ion ratio R on the structural, thermal, and electrochemical properties of sol–gel derived lithium nickel cobalt oxides, Solid State Ionics 152 (2002).

DOI: 10.1016/s0167-2738(02)00065-6

Google Scholar

[22] S.A. Ansari, A. Nisar, B. Fatma, W. Khan, A.H. Naqvi, Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route, Mater. Sci. Eng. B. 177 (2012) 428-435.

DOI: 10.1016/j.mseb.2012.01.022

Google Scholar

[23] I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method, J. Magn. Magn. Mater. 311 (2007) 494-499.

DOI: 10.1016/j.jmmm.2006.08.005

Google Scholar

[24] K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, Study of dielectric and ac impedance properties of Ti doped Mn ferrites, Curr. Appl. Phys. 9 (2009)1397-1406.

DOI: 10.1016/j.cap.2009.03.012

Google Scholar

[25] M.N. Ahamad, K.B.R. Varma, Dielectric properties of (100−x)Li2B4O7–x(Ba5Li2Ti2Nb8O30) glasses and glass nanocrystal composites, Mater. Sci. Eng. B. 167 (2010) 193-201.

DOI: 10.1016/j.mseb.2010.02.016

Google Scholar

[26] A. Viswanathan, S.A. Suthanthiraraj, Impedance and modulus spectroscopic studies on the fast ion conducting system CuI. Ag2MoO4, Solid State Ionics 62 ( 1993 ) 79-83.

DOI: 10.1016/0167-2738(93)90254-z

Google Scholar

[27] M.C.R. Shastry, K.J. Rao, ac conductivity and dielectric relaxation studies in AgI-based fast ion conducting glasses, Solid State lonics 44 ( 1991 ) 187-198.

DOI: 10.1016/0167-2738(91)90007-x

Google Scholar

[28] S. Selvasekarapandian, R.C. Devi, Dielectric studies on a solid electrolyte AgI-PbBr2-Ag2O-B2O3, Mater. Chem. Phys. 58 (1999) 90-93.

DOI: 10.1016/s0254-0584(98)00256-9

Google Scholar