[1]
Z. Persin, K. Stana-Kleinschek, T.J. Foster, J.E.G.V. Dam, C.G. Boeriu, P. Navard, Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care, Carbohydrate Polymers: Elsevier, (2011).
DOI: 10.1016/j.carbpol.2010.11.044
Google Scholar
[2]
European Polysaccharide Network of Excellence. http: /www. epnoe. eu/Home. Last Access May (2015).
Google Scholar
[3]
A.P. Manian, B. Široká, T. Bechtold, Polysaccharide Applications in Textiles and Materials Technologies. Len zinger Berichte, 2013, pp.98-102.
Google Scholar
[4]
Y. Byun, Y.T. Kim, Utilization of bio-plastics in food packaging industry, in: J.H. Han, (Ed. ), Innovations in food packaging, Elsevier Ltd.: California, USA, 2014, Chap. 15: 369-389.
DOI: 10.1016/b978-0-12-394601-0.00015-1
Google Scholar
[5]
European bioplastics for packaging market applications. www. bio-plastics. org. Last access May (2015).
Google Scholar
[6]
European bioplastics http: /www. bio-plastics. org/en/information-knowledge-amarket-know-how/basics/the-bioplastics-market-an-overview. Last Access May (2015).
Google Scholar
[7]
S. Kabasci, Bio-Based Plastics: Materials and Applications. New Delhi, India: Wiley Series, (2014).
Google Scholar
[8]
L. Brinchi, F. Cotana, E. Fortunati, J.M. Kenny, Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications, Carbohydr. Polym. 94 (2013) 154-169.
DOI: 10.1016/j.carbpol.2013.01.033
Google Scholar
[9]
N.B. Shelke, R. James, C.T. Laurencin, S. G, Kumbar, Polysaccharide biomaterials for drug delivery and regenerative engineering, Polym. Adv. Technol. 25 (2014) 448-460.
DOI: 10.1002/pat.3266
Google Scholar
[10]
V. Venugopal, Marine Polysaccharides: Food Applications. Boca Raton: CRC Press, (2011).
Google Scholar
[11]
F.W. Lichtenthaler. Carbohydrates as organic raw materials. In: Ullmann's encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. (2000).
Google Scholar
[12]
E.C. Giese, A.M. Barbosa, R.F.H. Dekker, In Handbook on Carbohydrate Polymers: Development, Properties and Applications; R. Ito;Y. Matsuo, Eds.; Nova Science Publishers, Inc. : NY (USA), 2010, Chap. 8: 279-309.
Google Scholar
[13]
H.P.S. Abdul Khalil, A.H. Bhat, A.F. Ireana Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review, Carbohydr. Polym. 87 (2012) 963-979.
DOI: 10.1016/j.carbpol.2011.08.078
Google Scholar
[14]
A.M. Stephen, G.O. Phillips, P.A. Williams. Food Polysaccharides and Their Applications. Boca Raton, United States: CRC Press. (2006).
Google Scholar
[15]
A. Villares, L. Mateo-Vivaracho, E. Guillamón, E. Structural Features and Healthy Properties of Polysaccharides Occurring in Mushrooms, Agriculture 2 (2012) 452-471.
DOI: 10.3390/agriculture2040452
Google Scholar
[16]
I. Sánchez-Ortega, B.E. García-Almendárez, E.M. Santos-López, A. Amaro-Reyes, J.E. Barboza-Corona, C. Regalado, C. 2014. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation, Sci. World J. (2014) 1-18.
DOI: 10.1155/2014/248935
Google Scholar
[17]
G.A. Paula, N.M.B. Benevides, A.P. Cunha, A.V. de Oliveira, A.M.B. Pinto, J.P.S. Morais, H.M.C. Azeredo, 2015. Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate, Food Hydrocolloids 47 (2015).
DOI: 10.1016/j.foodhyd.2015.01.004
Google Scholar
[18]
A.M. Shi, L.J. Wang, D. Li, B. Adhikari, B. 2013. Characterization of starch films containing starch nanoparticles: Part 1: Physical and mechanical properties, Carbohydr. Polym. 96 (2013) 593-601.
DOI: 10.1016/j.carbpol.2012.12.042
Google Scholar
[19]
T.J. Gutiérrez, M.S. Tapia, E. Pérez, L. Famá, Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch, Food Hydrocolloids 45 (2015) 211-217.
DOI: 10.1016/j.foodhyd.2014.11.017
Google Scholar
[20]
N. Klaochanpong, C. Puttanlek, V. Rungsardthong, S. Puncha-arnon, D. Uttapap, D. Physicochemical and structural properties of debranched waxy rice, waxy corn and waxy potato starches, Food Hydrocolloids 45 (2015) 218-226.
DOI: 10.1016/j.foodhyd.2014.11.010
Google Scholar
[21]
H.Y. Kim, S.S. Park, S.T. Lim. Preparation, characterization and utilization of starch nanoparticles, Colloids Surf B Biointerfaces, 126 (2015) 607-620.
DOI: 10.1016/j.colsurfb.2014.11.011
Google Scholar
[22]
N.V. Cuong, P.N.N. Han, N.K. Hoang, N.N.L. Giang. In 5th International Conference on Biomedical Engineering in Vietnam; V. V. Toi;T. H. Lien Phuong, Eds.; Springer International Publishing, 2015, Chap. 15: 58-61.
Google Scholar
[23]
L.A.M. van den Broek, R.J.I. Knoop, F.H.J. Kappen, C.G. Boeriu. Chitosan films and blends for packaging material, Carbohyd. Polym. 116 (2015) 237-242.
DOI: 10.1016/j.carbpol.2014.07.039
Google Scholar
[24]
A.M. Salaberria, R.H. Diaz, J. Labidi, S.C.M. Fernandes, Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass – Chitin nanofillers and chitosan. React. Funct. Polym. 89 (2015) 31-39.
DOI: 10.1016/j.reactfunctpolym.2015.03.003
Google Scholar
[25]
I. Leceta, P. Guerrero, K. de la Caba. Functional properties of chitosan-based films, Carbohyd. Polym. 93 (2013) 339-346.
DOI: 10.1016/j.carbpol.2012.04.031
Google Scholar
[26]
M.A. Cerqueira, A.I. Bourbon, A.C. Pinheiro, J.T. Martins, B.W.S. Souza, J.A. Teixeira, A.A. Vicente. Galactomannans use in the development of edible films/coatings for food applications, Trends Food Sci. Technol. 22 (2011) 662-671.
DOI: 10.1016/j.tifs.2011.07.002
Google Scholar
[27]
M. Cerqueira, B.S. Souza, J. Teixeira, A. Vicente, A. Utilization of Galactomannan from Gleditsia triacanthos in Polysaccharide-Based Films: Effects of Interactions Between Film Constituents on Film Properties, Food Bioproc. Technol. 6 (2013).
DOI: 10.1007/s11947-011-0753-x
Google Scholar
[28]
G. El-Fawal. Preparation, characterization and antibacterial activity of biodegradable films prepared from carrageenan, J. Food Sci. Technol. 51 (2014) 2234-2239.
DOI: 10.1007/s13197-013-1255-9
Google Scholar
[29]
E. Marcuzzo, F. Debeaufort, A. Sensidoni, L. Tat, L. Beney, A. Hambleton, D. Peressini, A. Voilley, A. Release Behavior and Stability of Encapsulated d-Limonene from Emulsion-Based Edible Films, J, Agric. Food Chem. 60 (2012) 12177-12185.
DOI: 10.1021/jf303327n
Google Scholar
[30]
J.W. Rhim, L.F. Wang, L. -F. Mechanical and water barrier properties of agar/κ-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohyd. Polym. 96 (2013) 71-81.
DOI: 10.1016/j.carbpol.2013.03.083
Google Scholar
[31]
D. Krishnaiah, R. Sarbatly, R. Nithyanandam. Microencapsulation of Morinda citrifolia L. extract by spray-drying, Chem. Eng. g Res. Design 90 (2012) 622-632.
DOI: 10.1016/j.cherd.2011.09.003
Google Scholar
[32]
Y. Zheng, J. Monty, R.J. Linhardt. Polysaccharide-based nanocomposites and their applications, Carbohyd. Res. 405 (2015) 23-32.
DOI: 10.1016/j.carres.2014.07.016
Google Scholar
[33]
M.J. Costa, M.A. Cerqueira, H.A. Ruiz, C. Fougnies, A. Richel, A.A. Vicente, J.A. Teixeira, M. Aguedo. Use of wheat bran arabinoxylans in chitosan-based films: Effect on physicochemical properties, Ind. Crops Prod. 66 (2015) 305-311.
DOI: 10.1016/j.indcrop.2015.01.003
Google Scholar
[34]
K.H. Caffall, D. Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides, Carbohyd. Res. 344 (2009) 1879-(1900).
DOI: 10.1016/j.carres.2009.05.021
Google Scholar
[35]
D.D. Stokke, Q. Wu, G. Han. Introduction to Wood and Natural Fiber Composites. New Delhi, India: Wiley Series. (2014).
Google Scholar
[36]
H. Le Gall, F. Philippe, J.M. Domon, F. Gillet, J. Pelloux, C. Rayon. Cell Wall Metabolism in Response to Abiotic Stress, Plants 4 (2015) 112-166.
DOI: 10.3390/plants4010112
Google Scholar
[37]
O. Lerouxel, D.M. Cavalier, A.H. Liepman, K. Keegstra, K. Biosynthesis of plant cell wall polysaccharides — a complex process., Curr. Opin. Plant Biol. 9 (2006) 621-630.
DOI: 10.1016/j.pbi.2006.09.009
Google Scholar
[38]
L. Coll-Almela, D. Saura-López, J. Laencina-Sánchez, H.A. Schols, A.G.J. Voragen, J.M. Ros-García, Characterisation of cell-wall polysaccharides from mandarin segment membranes, Food Chem. 175 (2015) 36-42.
DOI: 10.1016/j.foodchem.2014.11.118
Google Scholar
[39]
P. Shao, X. Chen, P. Sun. Improvement of antioxidant and moisture-preserving activities of Sargassum horneri polysaccharide enzymatic hydrolyzates. Int. J. Biol. Macromol. 74 (2015) 420-427.
DOI: 10.1016/j.ijbiomac.2014.12.021
Google Scholar
[40]
M. Eibinger, T. Ganner, P. Bubner, S. Rosker, D. Kracher, D. Haltrich, R. Ludwig, H. Plank, B. Nidetzky, B. Cellulose Surface Degradation by a Lytic Polysaccharide Monooxygenase and Its Effect on Cellulase Hydrolytic Efficiency, J. Biol. Chem. 289 (2014).
DOI: 10.1074/jbc.m114.602227
Google Scholar
[41]
H. Jiang, Q. Chen, J. Ge, Y. Zhang. Efficient extraction and characterization of polymeric hemicelluloses from hybrid poplar, Carbohyd. Polym. 101 (2014) 1005-1012.
DOI: 10.1016/j.carbpol.2013.10.030
Google Scholar
[42]
S.N. Sun, X.F. Cao, F. Xu, R.C. Sun, G.L. Jones, M. Baird. Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens, Carbohydr. Polym. 101 (2014) 1191-1197.
DOI: 10.1016/j.carbpol.2013.09.109
Google Scholar
[43]
S. Rivas, M.J. González-Muñoz, V. Santos, J.C. Parajó. Acidic processing of hemicellulosic saccharides from pine wood: Product distribution and kinetic modeling, Biores. Technol. 162 (2014) 192-199.
DOI: 10.1016/j.biortech.2014.03.150
Google Scholar
[44]
Z. Ma, C. Zhang, X. Gao, F. Cui, J. Zhang, M. Jia, S. Jia, L. Jia. Enzymatic and acidic degradation effect on intracellular polysaccharide of Flammulina velutipes SF-08, Int. J. Biol. Macromol. 73 (2015) 236-244.
DOI: 10.1016/j.ijbiomac.2014.11.028
Google Scholar
[45]
Z. Zhang, G. Lv, W. He, L. Shi, H. Pan, L. Fan. Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes, Carbohydr. Polym. 98 (2013) 1524-1531.
DOI: 10.1016/j.carbpol.2013.07.052
Google Scholar
[46]
W. Vermerris, A. Abril. Enhancing cellulose utilization for fuels and chemicals by genetic modification of plant cell wall architecture, Curr. Opin. Biotechnol. 32 (2015) 104-112.
DOI: 10.1016/j.copbio.2014.11.024
Google Scholar
[47]
K. Ziemiński, M. Kowalska-Wentel. Effect of enzymatic pretreatment on anaerobic co-digestion of sugar beet pulp silage and vinasse, Biores. Technol. 180 (2015) 274-280.
DOI: 10.1016/j.biortech.2014.12.035
Google Scholar
[48]
T. Shimokawa, E. Togawa, K. Kakegawa, A. Kato, N. Hayashi. Film formation and some structural features of hemicellulose fractions from Pinus densiflora leaves, J. Wood Sci. 61 (2015) 53-59.
DOI: 10.1007/s10086-014-1440-0
Google Scholar
[49]
M.A. Cerqueira, A.I. Bourbon, A.C. Pinheiro, B.W.A. Martins; Souza, J.A. Teixeira, A.A. Vicente. Galactomannans use in the development of edible films/coatings for food applications, Trends Food Sci. Technol. 22 (2011) 662-671.
DOI: 10.1016/j.tifs.2011.07.002
Google Scholar
[50]
H. Arnon, Y. Zaitsev, R. Porat, E. Poverenov, E. Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit, Postharv. Biol. Technol. 87 (2014) 21-26.
DOI: 10.1016/j.postharvbio.2013.08.007
Google Scholar
[51]
H. Arnon, R. Granit, R. Porat, E. Poverenov. Development of polysaccharides-based edible coatings for citrus fruits: A layer-by-layer approach, Food Chem. 166 (2015) 465-472.
DOI: 10.1016/j.foodchem.2014.06.061
Google Scholar
[52]
S. Ravishankar, D. Jaroni, L. Zhu, C. Olsen, T. McHugh, M. Friedman. Inactivation of Listeria monocytogenes on Ham and Bologna Using Pectin-Based Apple, Carrot, and Hibiscus Edible Films Containing Carvacrol and Cinnamaldehyde, J. Food Sci. 77 (2012).
DOI: 10.1111/j.1750-3841.2012.02751.x
Google Scholar
[53]
D. Sánchez Aldana, S. Andrade-Ochoa, C.N. Aguilar, J.C. Contreras-Esquivel, G.V. Nevárez-Moorillón. Antibacterial activity of pectic-based edible films incorporated with Mexican lime essential oil, Food Control 50 (2015) 907-912.
DOI: 10.1016/j.foodcont.2014.10.044
Google Scholar
[54]
C.G. Otoni, S.F.O. Pontes, E.A.A. Medeiros, N.D.F.F. Soares. Edible films from methylcellulose and nanoemulsions of clove bud (Syzygium aromaticum) and oregano (Origanum vulgare) essential oils as shelf life extenders for sliced bread, J. Agric. Food Chem. 62 (2014).
DOI: 10.1021/jf501055f
Google Scholar
[55]
O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain. Biocomposites reinforced with natural fibers: 2000–2010, Prog. Polym. Sci. 37 (2012) 1552-1596.
DOI: 10.1016/j.progpolymsci.2012.04.003
Google Scholar
[56]
A. Valdés, M. Ramos, A. Beltrán, M.C. Garrigós. Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues, Polym. Degrad. Stab. 108 (2014) 269-279.
DOI: 10.1016/j.polymdegradstab.2014.03.011
Google Scholar
[57]
A.M. Slavutskya, M.A. Bertuzziba. Water barrier properties of starch films reinforced with cellulosenanocrystals obtained from sugarcane bagasse, Carbohydr. Polym. 110 (2014) 53-61.
DOI: 10.1016/j.carbpol.2014.03.049
Google Scholar
[58]
I.J. Joye, D.J. McClements. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr. Opin. Colloid Interf. Sci. 19 (2014) 417-427.
DOI: 10.1016/j.cocis.2014.07.002
Google Scholar
[59]
V. Falguera, J.P. Quintero, A. Jimenez, J.A. Muñoz, A. Ibarz, A. 2011. Edible films and coatings: Structures, active functions and trends in their use, Trends Food Sci. Technol. 22 (2011) 292-303.
DOI: 10.1016/j.tifs.2011.02.004
Google Scholar