Growth of Lead and Aluminum Substituted Barium Hexaferrite Single Crystals from Lead Oxide Flux

Article Preview

Abstract:

Lead and aluminum substituted barium hexaferrite (Ba,Pb)Fe12–хAlхO19 single crystals were grown from lead oxide flux at 1260 °C as hexagonal plates with sizes of about 2 mm. A maximum substitution level of x = 4.82 was achieved for the first time for bulk single crystals. The variation of the unit cell parameters with Al content is in good agreement with literature data on exclusively Al substituted barium hexaferrite, while the substitution of Ba by Pb has hardly any influence. Similarly, Pb has only a negligible influence on the magnetic properties, while Al substitution significantly reduces the saturation magnetization in a very similar manner as known from Pb-free barium hexaferrite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-9

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.A. Marino-Castellanos, J. Anglada-Rivera, A. Cruz-Fuentes, R. Lora-Serrano, Magnetic and microstructural properties of the Ti4+-doped Barium hexaferrite, J. Magn. Magn. Mater. 280 (2004) 214-220.

DOI: 10.1016/j.jmmm.2004.03.015

Google Scholar

[2] B.T. Geok, S. Nagalingam, D.A. Jefferson, Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol–gel method, Mat. Chem. Phys. 101( 2007) 158-162.

DOI: 10.1016/j.matchemphys.2006.03.008

Google Scholar

[3] W. Zhang, B. Peng, W. Zhang, S. Zhou, H. Schmidt, Ultra large coercivity in barium ferrite thin films prepared by magnetron sputtering, J. Magn. Magn. Mat. 322 (2010) 1859-1862.

DOI: 10.1016/j.jmmm.2009.12.041

Google Scholar

[4] H. Xu, W. Zhang, B. Peng, W. Zhang, Properties of barium hexa-ferrite thin films dependent on sputtering pressure, Appl. Surf. Sci. 257 (2011) 2689-2693.

DOI: 10.1016/j.apsusc.2010.10.045

Google Scholar

[5] Y. -Y. Song, C.L. Ordóñez-Romero, M. Wu, Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites, Appl. Phys. Lett. 95 (2009) 142506.

DOI: 10.1063/1.3246170

Google Scholar

[6] V.G. Harris, Modern microwave ferrites, IEEE Trans. Mag. 48 (2012) 1075-1104.

Google Scholar

[7] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isaenko, G.G. Mikhailov, R. Niewa, Ti-Substituted BaFe12O19 Single Crystal Growth and Characterization, Cryst. Growth Design. 14 (2014).

DOI: 10.1021/cg501075c

Google Scholar

[8] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, L.I. Isaenko, R. Niewa, Growth, Structural and Magnetic Characterization of Co- and Ni-substituted Barium Hexaferrite Single Crystals, J. Alloys Compd. 628 (2015).

DOI: 10.1016/j.jallcom.2014.12.124

Google Scholar

[9] D.A. Vinnik, A.S. Semisalova, A.K. Yakushechkina, S. Nemrava, S.A. Gudkova, D.A. Zherebtsov, N.S. Perov, L.I. Isaenko, R. Niewa, Growth, Structural and Magnetic Characterization of Zn-substituted Barium Hexaferrite Single Crystals, Mat. Chem. Phys. 163 (2015).

DOI: 10.1016/j.matchemphys.2015.07.059

Google Scholar

[10] D.A. Vinnik, A. Tarasova, D.A. Zherebtsov, L.S. Mashkovtseva, S.A. Gudkova, S. Nemrava, A.K. Yakushechkina, A.S. Semisalova, L.I. Isaenko, R. Niewa. Cu-substituted barium hexaferrite crystal growth and characterization, Ceram. Int. 41 (2015).

DOI: 10.1016/j.ceramint.2015.03.051

Google Scholar

[11] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.K. Yakushechkina, A.S. Semisalova, S.A. Gudkova, A.N. Anikeev, N.S. Perov, L.I. Isaenko, R. Niewa, Tungsten substituted BaFe12O19 single crystal growth and characterization, Mat. Chem. Phys. 155 (2015).

DOI: 10.1016/j.matchemphys.2015.02.005

Google Scholar

[12] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, M. Bischoff, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isayenko, G.G. Mikhailov, R. Niewa, Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals, J. Alloys Compds. 615 (2015).

DOI: 10.1016/j.jallcom.2014.07.126

Google Scholar

[13] D.A. Vinnik, A.B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals, Ceram. Int. 41 (2015).

DOI: 10.1016/j.ceramint.2015.06.105

Google Scholar

[14] A.B. Ustinov, A.S. Tatarenko, G. Srinivasan, A.M. Balbashov, Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices, J. Appl. Phys. 105 (2009) 105-108.

DOI: 10.1063/1.3067759

Google Scholar

[15] A.B. Ustinov, G. Srinivasan, Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers, Appl. Phys. Lett. 93 (2008) 93-95.

DOI: 10.1063/1.2996585

Google Scholar

[16] M. Popov, I. Zavislyak, A. Ustinov, G. Srinivasan, Sub-Terahertz Magnetic and Dielectric Excitations in Hexagonal Ferrites, IEEE Trans. Mag. 47 (2011) 289-294.

DOI: 10.1109/tmag.2010.2091677

Google Scholar

[17] I. Harward, Y. Nie, D. Chen, J. Baptist, M.J. Shaw, E.J. Liskova, S. Visnovsky, P. Siroky, M. Lesnak, J. Pistora, Z. Celinski, Physical properties of Al doped Ba hexagonal ferrite thin films, J. Appl. Phys. 113 (2013) 1-12.

DOI: 10.1063/1.4788699

Google Scholar

[18] S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite, Phys. B: Cond. Mat. 426 (2013) 137-143.

DOI: 10.1016/j.physb.2013.06.026

Google Scholar

[19] A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12−xAlxO19 (x=0. 1–1. 2) solid solutions, J. Magn. Magn. Mat. 393 (2015) 253-259.

DOI: 10.1016/j.jmmm.2015.05.076

Google Scholar

[20] A. Moitra, S. Kim, S.C. Erwin, Y. Hong, J. Park, Defect formation energy and magnetic properties of aluminum-substituted M-type barium hexaferrite, Comp. Cond. Mat. 1 (2014) 45-50.

DOI: 10.1016/j.cocom.2014.11.001

Google Scholar

[21] D. Chen, I. Harward, J. Baptist, S. Goldman, Z. Celinski, Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method, J. Magn. Magn. Mat. 395(2015) 350-353.

DOI: 10.1016/j.jmmm.2015.07.076

Google Scholar

[22] D. Chen, Y. Liu, Y. Li, K. Yang, H. Zhang, Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent, J. Magn. Magn. Mat. 337 (2013) 65-69.

DOI: 10.1016/j.jmmm.2013.02.036

Google Scholar

[23] A.M. Balbashov, S.K. Egorov, Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating, J. Cryst. Growth. 52 (1981) 498-504.

DOI: 10.1016/0022-0248(81)90328-6

Google Scholar

[24] M.A. Wittenauer, J.A. Nyenhuis, A.I. Schindler, H. Sato, F.J. Friedlaender, J. Truedson, R. Karim, C.E. Patton, Growth and characterization of high purity single crystals of barium ferrite, J. Cryst. Growth. 130 (1993) 533-542.

DOI: 10.1016/0022-0248(93)90542-5

Google Scholar

[25] K. Watanabe, Growth of minute barium ferrite single crystals from a Na2O-B2O3 flux system, J. Cryst. Growth. 169 (1996) 509-518.

DOI: 10.1016/s0022-0248(96)00436-8

Google Scholar

[26] J. Aidelberg, J. Flicstein, M. Schieber, Cellular growth in BaFe12O19 crystals solidified from flux solvent, J. Cryst. Growth. 21 (1974) 195-202.

DOI: 10.1016/0022-0248(74)90005-0

Google Scholar

[27] L. Shlyk, S. Strobel, E. Rose, R. Niewa, BaZnRu5O11: Novel Compound with Frustrated Magnetic Lattice Based on Distorted Kagome Networks. Sol. St. Sci. 14 (2012) 281-286.

DOI: 10.1016/j.solidstatesciences.2011.11.033

Google Scholar

[28] L. Shlyk, S. Strobel, Th. Schleid, R. Niewa, Ruthenate-ferrites AMRu5O11 (A = Sr, Ba; M = Ni, Zn): Distortion of kagome nets via metal–metal bonding, Z. Kristallogr. 227 (2012) 545-551.

DOI: 10.1524/zkri.2012.1450

Google Scholar

[29] R.J. Gambino, F. Leonhard, Growth of Barium Ferrite Single Crystals, J. Am. Ceram. Soc. 44 (1961) 221.

Google Scholar

[30] D.A. Vinnik, L.S. Mashkovtseva, D.A. Zherebtsov, V.V. Dyachuk, G.G. Mikhailov, Growing of barium ferrite crystals from a solution, Bull. S. Ural State Univ. Metall. Ser. (in Russian). 36 (253) (2011) 41-44.

Google Scholar

[31] D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva. Growing doped barium ferrite single crystals using the flux method. Dok. Phys. Chem. 449 (2013) 39-40.

DOI: 10.1134/s0012501613030044

Google Scholar

[32] F. x Licci, T. Besagni, Growth and characterization of Ba(Mn, Ti)xFe12-xO19 crystals, Mat. Res. Bull., 22 (1987) 467-476.

DOI: 10.1016/0025-5408(87)90256-x

Google Scholar

[33] D.A. Vinnik, Resistive furnace for single crystal growth (in Russian), Butl. Com. 39 (2014) 153-154.

Google Scholar

[34] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A32 (1976) 751-767.

DOI: 10.1107/s0567739476001551

Google Scholar

[35] W.D. Townes, J.H. Fang, A.J. Perrotta, The crystal structure and refinement of ferromagnetic barium ferrite, BaFe12O19, Z. Kristallogr. 125 (1967) 437-449.

DOI: 10.1524/zkri.1967.125.125.437

Google Scholar

[36] F. -z. Mou, J. -g. Guan, Z. -g. Sun, X. -a. Fan, G. -x. Tong, In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays, J. Sol. St. Chem. 183 (2010) 736-743.

DOI: 10.1016/j.jssc.2010.01.016

Google Scholar

[37] K. Watanabe, Growth of minute barium ferrite single crystals from a Na2O-B2O3 flux system, J. Cryst. Growth. 169 (1996) 509-518.

DOI: 10.1016/s0022-0248(96)00436-8

Google Scholar