[1]
P.A. Marino-Castellanos, J. Anglada-Rivera, A. Cruz-Fuentes, R. Lora-Serrano, Magnetic and microstructural properties of the Ti4+-doped Barium hexaferrite, J. Magn. Magn. Mater. 280 (2004) 214-220.
DOI: 10.1016/j.jmmm.2004.03.015
Google Scholar
[2]
B.T. Geok, S. Nagalingam, D.A. Jefferson, Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by sol–gel method, Mat. Chem. Phys. 101( 2007) 158-162.
DOI: 10.1016/j.matchemphys.2006.03.008
Google Scholar
[3]
W. Zhang, B. Peng, W. Zhang, S. Zhou, H. Schmidt, Ultra large coercivity in barium ferrite thin films prepared by magnetron sputtering, J. Magn. Magn. Mat. 322 (2010) 1859-1862.
DOI: 10.1016/j.jmmm.2009.12.041
Google Scholar
[4]
H. Xu, W. Zhang, B. Peng, W. Zhang, Properties of barium hexa-ferrite thin films dependent on sputtering pressure, Appl. Surf. Sci. 257 (2011) 2689-2693.
DOI: 10.1016/j.apsusc.2010.10.045
Google Scholar
[5]
Y. -Y. Song, C.L. Ordóñez-Romero, M. Wu, Millimeter wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites, Appl. Phys. Lett. 95 (2009) 142506.
DOI: 10.1063/1.3246170
Google Scholar
[6]
V.G. Harris, Modern microwave ferrites, IEEE Trans. Mag. 48 (2012) 1075-1104.
Google Scholar
[7]
D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isaenko, G.G. Mikhailov, R. Niewa, Ti-Substituted BaFe12O19 Single Crystal Growth and Characterization, Cryst. Growth Design. 14 (2014).
DOI: 10.1021/cg501075c
Google Scholar
[8]
D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.S. Semisalova, D.M. Galimov, L.I. Isaenko, R. Niewa, Growth, Structural and Magnetic Characterization of Co- and Ni-substituted Barium Hexaferrite Single Crystals, J. Alloys Compd. 628 (2015).
DOI: 10.1016/j.jallcom.2014.12.124
Google Scholar
[9]
D.A. Vinnik, A.S. Semisalova, A.K. Yakushechkina, S. Nemrava, S.A. Gudkova, D.A. Zherebtsov, N.S. Perov, L.I. Isaenko, R. Niewa, Growth, Structural and Magnetic Characterization of Zn-substituted Barium Hexaferrite Single Crystals, Mat. Chem. Phys. 163 (2015).
DOI: 10.1016/j.matchemphys.2015.07.059
Google Scholar
[10]
D.A. Vinnik, A. Tarasova, D.A. Zherebtsov, L.S. Mashkovtseva, S.A. Gudkova, S. Nemrava, A.K. Yakushechkina, A.S. Semisalova, L.I. Isaenko, R. Niewa. Cu-substituted barium hexaferrite crystal growth and characterization, Ceram. Int. 41 (2015).
DOI: 10.1016/j.ceramint.2015.03.051
Google Scholar
[11]
D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, A.K. Yakushechkina, A.S. Semisalova, S.A. Gudkova, A.N. Anikeev, N.S. Perov, L.I. Isaenko, R. Niewa, Tungsten substituted BaFe12O19 single crystal growth and characterization, Mat. Chem. Phys. 155 (2015).
DOI: 10.1016/j.matchemphys.2015.02.005
Google Scholar
[12]
D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva, S. Nemrava, M. Bischoff, N.S. Perov, A.S. Semisalova, I.V. Krivtsov, L.I. Isayenko, G.G. Mikhailov, R. Niewa, Growth, structural and magnetic characterization of Al-substituted barium hexaferrite single crystals, J. Alloys Compds. 615 (2015).
DOI: 10.1016/j.jallcom.2014.07.126
Google Scholar
[13]
D.A. Vinnik, A.B. Ustinov, D.A. Zherebtsov, V.V. Vitko, S.A. Gudkova, I. Zakharchuk, E. Lähderanta, R. Niewa, Structural and millimeter-wave characterization of flux grown Al substituted barium hexaferrite single crystals, Ceram. Int. 41 (2015).
DOI: 10.1016/j.ceramint.2015.06.105
Google Scholar
[14]
A.B. Ustinov, A.S. Tatarenko, G. Srinivasan, A.M. Balbashov, Al substituted Ba-hexaferrite single-crystal films for millimeter-wave devices, J. Appl. Phys. 105 (2009) 105-108.
DOI: 10.1063/1.3067759
Google Scholar
[15]
A.B. Ustinov, G. Srinivasan, Subterahertz excitations and magnetoelectric effects in hexaferrite-piezoelectric bilayers, Appl. Phys. Lett. 93 (2008) 93-95.
DOI: 10.1063/1.2996585
Google Scholar
[16]
M. Popov, I. Zavislyak, A. Ustinov, G. Srinivasan, Sub-Terahertz Magnetic and Dielectric Excitations in Hexagonal Ferrites, IEEE Trans. Mag. 47 (2011) 289-294.
DOI: 10.1109/tmag.2010.2091677
Google Scholar
[17]
I. Harward, Y. Nie, D. Chen, J. Baptist, M.J. Shaw, E.J. Liskova, S. Visnovsky, P. Siroky, M. Lesnak, J. Pistora, Z. Celinski, Physical properties of Al doped Ba hexagonal ferrite thin films, J. Appl. Phys. 113 (2013) 1-12.
DOI: 10.1063/1.4788699
Google Scholar
[18]
S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite, Phys. B: Cond. Mat. 426 (2013) 137-143.
DOI: 10.1016/j.physb.2013.06.026
Google Scholar
[19]
A.V. Trukhanov, V.O. Turchenko, I.A. Bobrikov, S.V. Trukhanov, I.S. Kazakevich, A.M. Balagurov, Crystal structure and magnetic properties of the BaFe12−xAlxO19 (x=0. 1–1. 2) solid solutions, J. Magn. Magn. Mat. 393 (2015) 253-259.
DOI: 10.1016/j.jmmm.2015.05.076
Google Scholar
[20]
A. Moitra, S. Kim, S.C. Erwin, Y. Hong, J. Park, Defect formation energy and magnetic properties of aluminum-substituted M-type barium hexaferrite, Comp. Cond. Mat. 1 (2014) 45-50.
DOI: 10.1016/j.cocom.2014.11.001
Google Scholar
[21]
D. Chen, I. Harward, J. Baptist, S. Goldman, Z. Celinski, Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method, J. Magn. Magn. Mat. 395(2015) 350-353.
DOI: 10.1016/j.jmmm.2015.07.076
Google Scholar
[22]
D. Chen, Y. Liu, Y. Li, K. Yang, H. Zhang, Microstructure and magnetic properties of Al-doped barium ferrite with sodium citrate as chelate agent, J. Magn. Magn. Mat. 337 (2013) 65-69.
DOI: 10.1016/j.jmmm.2013.02.036
Google Scholar
[23]
A.M. Balbashov, S.K. Egorov, Apparatus for growth of single crystals of oxide compounds by floating zone melting with radiation heating, J. Cryst. Growth. 52 (1981) 498-504.
DOI: 10.1016/0022-0248(81)90328-6
Google Scholar
[24]
M.A. Wittenauer, J.A. Nyenhuis, A.I. Schindler, H. Sato, F.J. Friedlaender, J. Truedson, R. Karim, C.E. Patton, Growth and characterization of high purity single crystals of barium ferrite, J. Cryst. Growth. 130 (1993) 533-542.
DOI: 10.1016/0022-0248(93)90542-5
Google Scholar
[25]
K. Watanabe, Growth of minute barium ferrite single crystals from a Na2O-B2O3 flux system, J. Cryst. Growth. 169 (1996) 509-518.
DOI: 10.1016/s0022-0248(96)00436-8
Google Scholar
[26]
J. Aidelberg, J. Flicstein, M. Schieber, Cellular growth in BaFe12O19 crystals solidified from flux solvent, J. Cryst. Growth. 21 (1974) 195-202.
DOI: 10.1016/0022-0248(74)90005-0
Google Scholar
[27]
L. Shlyk, S. Strobel, E. Rose, R. Niewa, BaZnRu5O11: Novel Compound with Frustrated Magnetic Lattice Based on Distorted Kagome Networks. Sol. St. Sci. 14 (2012) 281-286.
DOI: 10.1016/j.solidstatesciences.2011.11.033
Google Scholar
[28]
L. Shlyk, S. Strobel, Th. Schleid, R. Niewa, Ruthenate-ferrites AMRu5O11 (A = Sr, Ba; M = Ni, Zn): Distortion of kagome nets via metal–metal bonding, Z. Kristallogr. 227 (2012) 545-551.
DOI: 10.1524/zkri.2012.1450
Google Scholar
[29]
R.J. Gambino, F. Leonhard, Growth of Barium Ferrite Single Crystals, J. Am. Ceram. Soc. 44 (1961) 221.
Google Scholar
[30]
D.A. Vinnik, L.S. Mashkovtseva, D.A. Zherebtsov, V.V. Dyachuk, G.G. Mikhailov, Growing of barium ferrite crystals from a solution, Bull. S. Ural State Univ. Metall. Ser. (in Russian). 36 (253) (2011) 41-44.
Google Scholar
[31]
D.A. Vinnik, D.A. Zherebtsov, L.S. Mashkovtseva. Growing doped barium ferrite single crystals using the flux method. Dok. Phys. Chem. 449 (2013) 39-40.
DOI: 10.1134/s0012501613030044
Google Scholar
[32]
F. x Licci, T. Besagni, Growth and characterization of Ba(Mn, Ti)xFe12-xO19 crystals, Mat. Res. Bull., 22 (1987) 467-476.
DOI: 10.1016/0025-5408(87)90256-x
Google Scholar
[33]
D.A. Vinnik, Resistive furnace for single crystal growth (in Russian), Butl. Com. 39 (2014) 153-154.
Google Scholar
[34]
R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A32 (1976) 751-767.
DOI: 10.1107/s0567739476001551
Google Scholar
[35]
W.D. Townes, J.H. Fang, A.J. Perrotta, The crystal structure and refinement of ferromagnetic barium ferrite, BaFe12O19, Z. Kristallogr. 125 (1967) 437-449.
DOI: 10.1524/zkri.1967.125.125.437
Google Scholar
[36]
F. -z. Mou, J. -g. Guan, Z. -g. Sun, X. -a. Fan, G. -x. Tong, In situ generated dense shell-engaged Ostwald ripening: A facile controlled-preparation for BaFe12O19 hierarchical hollow fiber arrays, J. Sol. St. Chem. 183 (2010) 736-743.
DOI: 10.1016/j.jssc.2010.01.016
Google Scholar
[37]
K. Watanabe, Growth of minute barium ferrite single crystals from a Na2O-B2O3 flux system, J. Cryst. Growth. 169 (1996) 509-518.
DOI: 10.1016/s0022-0248(96)00436-8
Google Scholar