[1]
L.V. Kozhitov, V.G. Kosushkin, V.V. Krapuhin, Ju.N. Parhomenko, Materials technology of micro- and nanoelectronics, MISiS, Moscow, (2007).
Google Scholar
[2]
V.N. Chernjaev, Technology of production of integrated circuits and microprocessors, Radio i svjaz', Moscow, (1987).
Google Scholar
[3]
V.N. Lozovskiy, L.S. Lunin, V.P. Popov, Temperature-gradient zone recrystallization of semiconductor materials, Metallurgy, Moscow, (1987).
Google Scholar
[4]
L.S. Lunin, A.V. Blagin, D.L. Alfimova, A.I. Popov, P.I. Razumovskij, Physics gradient epitaxy of semiconductor heterostructures, SKNC VSh, Rostov-na-Donu, (2008).
Google Scholar
[5]
A.A. Barannik, L.V. Blagina, O.E. Draka, D.G. Podshhipkov, Physico-chemical principles of the multicomponent semiconductors with a given substructure, SKNC VSh, Rostov-na-Donu, (2009).
Google Scholar
[6]
V.N. Lozovskij, A.S. Poluhin, N.P. Molibog, Ju.A. Evseev, Use of zone recrystallization temperature gradient in the technology of semiconductor devices, Electrotechnical industry. Series 5. Power semiconductor devices and converters on their basis: overview. 6-16 (1987).
Google Scholar
[7]
A.S. Polukhin, A.V. Baljuk, L.M. Seredin, B.M. Seredin, Patterns with separated p+-regions for semiconductor power devices at currents up to 100 A, Crystallization and properties of crystals. Interuniversity collection of scientific works South-Russian State Polytechnic University (NPI). (2003).
Google Scholar
[8]
A.S. Polukhin, T.K. Zueva, A.I. Solodovnik, The use of thermomigration in technology structures of power semiconductor devices, Power electronics. 3-9 (2006) 110-112.
Google Scholar
[9]
A.S. Polukhin, Thermomigration undirected linear zones in silicon wafers (100) to manufacture chips of power semiconductor devices, Components and technologies. 11 (2008) 97-100.
Google Scholar
[10]
A.S. Poluhin, Analysis of the technological factors of the thermomigration process, Power electronics. 5 (2013) 118-120.
Google Scholar
[11]
M. Benjamin, Etude de la thermomigration de l'aluminium dans le silicium pour la réalisation industrielle de murs d'isolation dans les composants de puissance bidirectionnels, Micro and nanotechnologies Microelectronics. 5 (2002) 222.
Google Scholar
[12]
N.P. Ljakisheva, Statecharts binary metallic systems, Mashinostoroenie, Moscow, (1996).
Google Scholar
[13]
B.M. Seredin, A.V. Blagin, The study of deformation processes of flat layers of a solvent with thermomigration through the silicon substrate, Higher education proceedings. North caucasus region. Technical science. 6-175 122-127.
Google Scholar
[14]
L.M. Seredin, B.M. Seredin, S. Ju. Knyazev, The study of reasons for non-reproducible generation of discrete zones election wetting, Higher education proceedings. North caucasus region. Technical science. 1 (2014) 125-130.
Google Scholar
[15]
L.V. Blagina, N.P. Efremova, V.P. Popov, B.M. Seredin, Kinetic aspects of technology gradient epitaxy of semiconductor compounds on the example of two systems, Higher education proceedings. North caucasus region. Technical science. 6 (2012).
Google Scholar
[16]
L.S. Lunin, M.L. Lunina, V.P. Popov, B.M. Seredin, S.N. Vashhenko, Thermomigration of melt inclusions in the crystal: a dynamic approach, Higher education proceedings. North caucasus region. Technical science. 6 (2012) 142-148.
Google Scholar
[17]
L.S. Lunin, V.N. Lozovskiy, B.M. Seredin, Stabilization of thermomigration profiling of soluble silicon wafers Vestnik of Southern Scientific Center Russian Academy of Sciences. 11-2 (2015) 10-16.
Google Scholar
[18]
V.N. Lozovskiy, B.M. Seredin, The physical aspects of the choice of thermomigration as a method local doping of crystals, Fundamental research. 3 (2015) 111-118.
Google Scholar
[19]
V.N. Lozovskij, L.S. Lunin, B.M. Seredin, Features get power silicon devices using the method of thermomigration, Electronic engineering. Series 2. Semiconductor devices. 2-3 (2015) 103-115.
Google Scholar
[20]
Ju.A. Evseev, P.G. Dermenzhi, Power semiconductor devices, Jenergoatomizdat, Moscow, (1981).
Google Scholar