[1]
Information on http: / gavr. org. ua.
Google Scholar
[2]
Federal rules and regulations in the field of industrial safety, Rules of examination of industrial safety Series. 26(12) (2014).
Google Scholar
[3]
State Standard 28702-90, Non-destructive testing, Thickness gauge, ultrasonic, General technical requirements, (1990).
Google Scholar
[4]
Guidance documents 03-421-01, Guidelines for the diagnosis of technical condition and residual life of vessels and equipment, (2002).
Google Scholar
[5]
Instructions for extending the safe operation of steam boilers with a working pressure up to 4. 0 MPa inclusive and hot water boilers with water temperature above 115 C. 20(10) (2006).
Google Scholar
[6]
A. T Motta, Zirconium alloys for supercritical water reactor applications: challenges and possibilities, J. Nuclear Materials. 371 (2007) 61-75.
Google Scholar
[7]
A. Yilmazbayhan, Transmission electron microscopy examination of oxide layers formed in zr alloys, J. Nuclear Materials. 349 (2006) 265-281.
DOI: 10.1016/j.jnucmat.2005.10.012
Google Scholar
[8]
A.D. Siwy Transmission electron microscopy of oxide development on 9СrОDS steel in supercritical water, J. Nuclear Materials. 392 (2009) 280-285.
DOI: 10.1016/j.jnucmat.2009.03.032
Google Scholar
[9]
H.Z. Brajnina, Solid state reactions in electroanalytical chemistry, Himija, Moscow, (1982).
Google Scholar
[10]
V.V. Slepushkin, Electrochemical analysis with pressure cells, J. Analytical Chemistry. 42/4 (1987) 606-616.
Google Scholar
[11]
M.B. Vidrevich, Analysis of various copper sulfides oxidation by voltammetry with a paste electrode, J. Zavodskaja laborotorija. 50/1 (1984) 17-19.
Google Scholar
[12]
T. P Smirnova, The mechanism for the anodic oxidation of indium antimonide, J. Izvestija Sibiri. 14/6 (1980) 21-25.
Google Scholar
[13]
V.G. Barikov, S.B. Rozhdestvenskaja, O.A. Songina, Voltammetry with mineral carbon paste electrode, J. Zavodskaja laborotorija. 35/7 (1969) 776-778.
Google Scholar
[14]
T.P. Smirnova, The study of the initial stages of the electrochemical oxidation of indium antimonide mode in situ, Proc. III Sibirskij analiticheskij seminar, Tomsk. (1980) 49-52.
Google Scholar
[15]
V.I. Belyj, N.F. Zaharchuk, T.P. Smirnova, I.G., Electrochemical methods of analysis of the technological environments and thin layers, J. Jelektronnaja promyshlennost. 11 (1980) 35-41.
Google Scholar
[16]
V.V. Smirnova, Voltammetric study of electroreduction of molybdenum anhydride, J. Chemistry and chemical technology. 21 (1978) 320-321.
Google Scholar
[17]
T.P. Smirnova, V.N. Shpurik, V.I. Belyj, N.F. Zaharchuk, The study of the chemical composition of the surface of indium antimonide, J. Izvestija. SO AN SSSR. 3 (1982) 93-97.
Google Scholar
[18]
E.K. Voropaj, X-ray determination of thin films, Proc. 59 nauchnaja konferencija studentov i aspirantov Belorusskogo gosudarstvennogo universiteta, Minsk. 1 (2002) 183-187.
Google Scholar
[19]
I.L. Rozenfeld, Anti-corrosion primers and inhibited paint finishes, Himija, Moscow, (1980).
Google Scholar
[20]
I.L. Rozenfeld, The accelerated corrosion test methods. Theory and practice, Metallurgija, Moscow, (1996).
Google Scholar
[21]
G. I Ievleva, V.I. Shavyrin, RU Patent 2260788. (2005).
Google Scholar
[22]
B.M. Grafov, E.A. Ukshe, Electrochemical AC circuit, Nauka, Moscow, (1973).
Google Scholar
[23]
A.V. Kirilina, Study of resistance of protective films formed by vapor-water-oxygen treatment of internal heating surfaces for the purpose of conservation of the boiler equipment, RGB, Moscow, (2005).
Google Scholar
[24]
T.V. Lipkina, S.M. Lipkin, A.I. Gajdar, V.M. Narochnaja, E.I. Kucherenko, A.S. Astahov, S.V. Kucherenko, S.A. Pozhidaeva, V.G. Shishka, Prediction of the protective ability of oxide films of the heating surfaces of thermal power equipment, J. Kontrol. Diagnostika. 4 (2014).
DOI: 10.14489/td.2014.04.pp.045-054
Google Scholar