Atomic Structure and Mechanical Properties of Defective Carbon Nanotube (7,7)

Article Preview

Abstract:

The article presents the results of first-principle modeling of a defectless (7,7) carbon nanotube and (7,7) nanotubes containing single and double vacancy defects, as well as Stone–Wales defects. These types of defects are often found in real nanotubes and affect their properties. We have established that reliable results can be obtained by using models of more than 1.5 nm in length. It turned out that a single vacancy defect has the least influence on Young modulus, and double n type vacancy defect in the most influential. The elongation at break also depends on the defect type and is 30-60% less than for perfect tubes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-84

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. de las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, Journal of Power Sources. 208 (2012) 74-85.

DOI: 10.1016/j.jpowsour.2012.02.013

Google Scholar

[2] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci. 2 (2009) 638-654.

DOI: 10.1039/b904116h

Google Scholar

[3] Di-hua Wu, Zh. Zhou, Recent progress of computational investigation on anode materials in Li ion batteries, Front. Phys. 6 (2011) 197-203.

DOI: 10.1007/s11467-011-0186-z

Google Scholar

[4] L. Wang, L. Ge, T.E. Rufford, J. Chen, W. Zhou, Z. Zhu, V. Rudolph, A comparison study of catalytic oxidation and acid oxidation to prepare carbon nanotubes for filling with Ru nanoparticles, Carbon. 49 (2011) 2022-(2032).

DOI: 10.1016/j.carbon.2011.01.028

Google Scholar

[5] C.H. Mi, G.S. Cao, X.B. Zhao, A non-GIC mechanism of lithium storage in chemical etched MWNTs, Journal of Electroanalytical Chemistry. 562 (2004) 217-221.

DOI: 10.1016/j.jelechem.2003.09.004

Google Scholar

[6] M.R. Johan, L.S. Moh, Growth and Optical Study of Carbon Nanotubes in a Mechano-Thermal Process. Carbon. 8 (2013) 1047-1056.

DOI: 10.1016/s1452-3981(23)14079-x

Google Scholar

[7] J.Y. Eom, D.Y. Kim, H.S. Kwon, Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition, Journal of Power Sources. 157 (2006) 507-514.

DOI: 10.1016/j.jpowsour.2005.08.024

Google Scholar

[8] H.Y. Jung, S. Hong, A. Yu, Efficient lithium storage from modified vertically aligned carbon nanotubes with open-ends. RSC Adv. 5 (2015) 68875-68880.

DOI: 10.1039/c5ra14263f

Google Scholar

[9] Y. Wu, J. Wang, K. Jiang, S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries. Frontiers of Physics. (2013) 1-17.

Google Scholar

[10] Z. Xiong, Y. Yun, H. -J. Jin, Applications of Carbon Nanotubes for Lithium Ion Battery Anodes. Materials. 6 (2013) 1138-1158.

DOI: 10.3390/ma6031138

Google Scholar

[11] T. Kar, J. Pattanayak, S. Scheiner, Insertion of Lithium Ions into Carbon Nanotubes: An ab Initio Study, J. Phys. Chem. A. 105 (2001) 10397-10403.

DOI: 10.1021/jp011698l

Google Scholar

[12] V. Meunier, J. Kephart, Ch. Roland, and J. Bernholc, Ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems, Physical Review Letters. 88 (2002) 075506.

DOI: 10.1103/physrevlett.88.075506

Google Scholar

[13] K. Nishidate, M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, Physical Review B. 71 (2005) 245418.

DOI: 10.1103/physrevb.71.245418

Google Scholar

[14] S.A. Sozykin, V.P. Beskachko, Structure of endohedral complexes of carbon nanotubes encapsulated with lithium and sodium. Molecular Physics. 111 (2013) 930-938.

DOI: 10.1080/00268976.2012.760049

Google Scholar

[15] V.A. Aleksandrov, A.S. Sabirov, Study of the Influence of Vacancies and Atoms Adsorbed into Carbon Nanotube Walls on Ion Dechanneling Using a Computer Simulation, Journal of Surface Investigation. Xray, Synchrotron and Neutron Techniques. 9 (2015).

DOI: 10.1134/s102745101502024x

Google Scholar

[16] A.I. Vasylenko, M.V. Tokarchuk, S. Jurga, Effect of a Vacancy in Single-Walled Carbon Nanotubes on He and NO Adsorption, J. Phys. Chem. C. 119 (2015) 5113-5116.

DOI: 10.1021/jp511532j

Google Scholar

[17] Q. Zhou, X. Yang, Z. Fu, C. Wang, L. Yuan, H. Zhang, Y. Tang, DFT study of oxygen adsorption on vacancy and stone-Wales defected single-walled carbon nanotubes with Cr-doped, Physica E: Low-dimensional Systems and Nanostructures. 65 (2015) 77-83.

DOI: 10.1016/j.physe.2014.07.005

Google Scholar

[18] J. -P. Salvetat, J. -M. Bonard, N.H. Thomson, Mechanical properties of carbon nanotubes. Applied Physics A. 69 (1999) 255-260.

Google Scholar

[19] A.R. Hall, L. An, J. Liu, Experimental measurement of single-wall carbon nanotube torsional properties, Physical Review Letters. 96 (2006) 1-4.

Google Scholar

[20] B.D. Jensen, K.E. Wise, G.M. Odegard, Simulation of the Elastic and Ultimate Tensile Properties of Diamond, Graphene, Carbon Nanotubes, and Amorphous Carbon Using a Revised ReaxFF Parametrization, The Journal of Physical Chemistry A. 119 (2015).

DOI: 10.1021/acs.jpca.5b05889

Google Scholar

[21] R. Rafiee, M. Mahdavi, Molecular dynamics simulation of defected carbon nanotubes, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. (2015) 1-9.

DOI: 10.1177/1464420715584809

Google Scholar

[22] M. Soler, E. Artacho, J.D. Gale, A. Garc, J. Junquera, P. Ordej, S. Daniel, The SIESTA method for ab initio order- N materials, J. Phys.: Condens. Matter. 14 (2002) 2745-2779.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[23] F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural Defects in Graphene, ACS Nano. 5 (2011) 26-41.

DOI: 10.1021/nn102598m

Google Scholar

[24] L. -J. Zhou, Z.F. Hou, L. -M. Wu, First-Principles Study of Lithium Adsorption and Diffusion on Graphene with Point Defects, The Journal of Physical Chemistry C. 116 (2012) 21780-21787.

DOI: 10.1021/jp304861d

Google Scholar

[25] J.M.H. Kroes, F. Pietrucci, Atom Vacancies on a Carbon Nanotube: To What Extent Can We Simulate their Effects, J. Chem. Theory Comput. 11 (2015) 3393-3400.

DOI: 10.1021/acs.jctc.5b00292

Google Scholar

[26] B. Akdim, T. Kar, X. Duan, R. Pachter, Density functional theory calculations of ozone adsorption on sidewall single-wall carbon nanotubes with Stone-Wales defects, Chemical Physics Letters. 445 (2007) 281-287.

DOI: 10.1016/j.cplett.2007.08.001

Google Scholar