Voltammetric and Chronopotentiometric Study of Nonstationary Processes at the Oxygen-Evolving Anodes in KF–NaF–AlF3–Al2O3 Melt

Article Preview

Abstract:

Abstract. Some features of behavior and kinetic of the anodic processes for the platinum and Cu–Fe–Ni alloy in the KF–NaF–AlF3–Al2O3 melts at 1025–1055 K have been studied by cyclic voltammetry and chronopotentiometry.The obtained results allowed us to conclude that mechanisms of the anodic processes at the platinum and Cu–Fe–Ni alloy are similar. Both mechanisms include the oxidation stage of electrode material. A rate of this stage is determined to depend significantly on the melt temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-26

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.N. Nekrasov, A.V. Suzdaltsev, O.V. Limanovskaya, A.P. Khramov, and Yu.P. Zaikov, Theoretical and experimental study of anode process at the carbon in KF–AlF3–Al2O3 melts, Electrochim. Acta 75 (2012) 296–304.

DOI: 10.1016/j.electacta.2012.05.007

Google Scholar

[2] J. Yang, J.N. Hryn, B.R. Davis, A. Roy, G.K. Krumdick, and J.A. Pomykala Jr., New opportunites for aluminum electrolysis with metal anodes in a low temperature electrolyte system, Light Metals (2004) 321–326.

Google Scholar

[3] S. Helle, M. Pedron, B. Assouli, B. Davis, D. Guay, and L. Roue, Structure and high-temperature oxidation behaviour of Cu–Ni–Fe alloys prepared by high-energy ball milling for application as inert anodes in aluminium electrolysis, Corrosion Science 52 ( 2010) 3348–3355.

DOI: 10.1016/j.corsci.2010.06.011

Google Scholar

[4] V.N. Nekrasov, O.V. Limanovskaya, A.V. Suzdaltsev, A.P. Khramov, and Yu.P. Zaikov, Stationary anodic process at platinum in KF–NaF–AlF3–Al2O3 melts, Rus. Metallurgy 8 (2014) 664–700.

DOI: 10.1134/s0036029514080084

Google Scholar

[5] A.V. Suzdaltsev, A.P. Khramov, and Yu.P. Zaikov, Carbon electrode for electrochemical studies in cryolite-alumina melts at 700–960°C, Rus. J. Electrochem. 48 (2012) 1141–1152.

DOI: 10.1134/s1023193512120117

Google Scholar

[6] E. Robert, J.E. Olsen, V. Danek, E. Tixhon, T. Ostvold, and B. Gilbert, Structure and thermodynamics of alkali fluoride-aluminum fluoride-alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies, J. Phys. Chem. B 101 (1997).

DOI: 10.1021/jp9634520

Google Scholar

[7] V. Danek, O.T. Gustavsen, and T. Ostvold, Structure of the MF–AlF3–Al2O3 (M = Li, Na, K) melts, Can. Met. Quart. 39 (2000) 153–162.

Google Scholar

[8] A.P. Khramov, N.I. Shurov, Modern views on the composition of anionic oxy-fluoride complexes of aluminium and their rearrangement during the electrolysis of cryolite-alumina melts, Rus. Metallurgy 8 (2014) 581–592.

DOI: 10.1134/s0036029514080059

Google Scholar

[9] S. Livingstone, Rhenium, rhodium, palladium, osmium, iridium and platinum. Pergamon, Oxford, (1975).

Google Scholar

[10] E.W. Dewing, E. Th. Van der Kouwe, Anodic phenomena in cryolite-alumina melts 1. Chronopotentiometry at gold and platinum anodes, J. Electrochem. Soc. 124 (1977) 58–64.

DOI: 10.1149/1.2133245

Google Scholar

[11] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed, John Wiley & Sons Inc., NY, (2001).

Google Scholar

[12] A. Yu. Filatov, M.I. Borzenko, Z.V. Kuzminova, S. Yu. Vassiliev, S.M. Kazakov, E.V. Antipov, and V.V. Lunin, Electrochemical equilibria in copper/cryolite-alumina melt systems, Mendeleev Comm. 18 (2008) 244–245.

DOI: 10.1016/j.mencom.2008.09.004

Google Scholar

[13] A.P. Khramov, V.A. Kovrov, Yu.P. Zaikov, V.M. Chumarev, Anodic behaviour of the Cu82Al8Ni5Fe5 alloy in low-temperature aluminium electrolysis, Corrosion Science 70 (2012) 194–202.

DOI: 10.1016/j.corsci.2013.01.029

Google Scholar

[14] I. Gallino, M.E. Kassner, R. Busch, Oxidation and corrosion of highly alloyed Cu–Fe–Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions, Corrosion Science 63 (2012) 293–303.

DOI: 10.1016/j.corsci.2012.06.013

Google Scholar