[1]
V.N. Nekrasov, A.V. Suzdaltsev, O.V. Limanovskaya, A.P. Khramov, and Yu.P. Zaikov, Theoretical and experimental study of anode process at the carbon in KF–AlF3–Al2O3 melts, Electrochim. Acta 75 (2012) 296–304.
DOI: 10.1016/j.electacta.2012.05.007
Google Scholar
[2]
J. Yang, J.N. Hryn, B.R. Davis, A. Roy, G.K. Krumdick, and J.A. Pomykala Jr., New opportunites for aluminum electrolysis with metal anodes in a low temperature electrolyte system, Light Metals (2004) 321–326.
Google Scholar
[3]
S. Helle, M. Pedron, B. Assouli, B. Davis, D. Guay, and L. Roue, Structure and high-temperature oxidation behaviour of Cu–Ni–Fe alloys prepared by high-energy ball milling for application as inert anodes in aluminium electrolysis, Corrosion Science 52 ( 2010) 3348–3355.
DOI: 10.1016/j.corsci.2010.06.011
Google Scholar
[4]
V.N. Nekrasov, O.V. Limanovskaya, A.V. Suzdaltsev, A.P. Khramov, and Yu.P. Zaikov, Stationary anodic process at platinum in KF–NaF–AlF3–Al2O3 melts, Rus. Metallurgy 8 (2014) 664–700.
DOI: 10.1134/s0036029514080084
Google Scholar
[5]
A.V. Suzdaltsev, A.P. Khramov, and Yu.P. Zaikov, Carbon electrode for electrochemical studies in cryolite-alumina melts at 700–960°C, Rus. J. Electrochem. 48 (2012) 1141–1152.
DOI: 10.1134/s1023193512120117
Google Scholar
[6]
E. Robert, J.E. Olsen, V. Danek, E. Tixhon, T. Ostvold, and B. Gilbert, Structure and thermodynamics of alkali fluoride-aluminum fluoride-alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies, J. Phys. Chem. B 101 (1997).
DOI: 10.1021/jp9634520
Google Scholar
[7]
V. Danek, O.T. Gustavsen, and T. Ostvold, Structure of the MF–AlF3–Al2O3 (M = Li, Na, K) melts, Can. Met. Quart. 39 (2000) 153–162.
Google Scholar
[8]
A.P. Khramov, N.I. Shurov, Modern views on the composition of anionic oxy-fluoride complexes of aluminium and their rearrangement during the electrolysis of cryolite-alumina melts, Rus. Metallurgy 8 (2014) 581–592.
DOI: 10.1134/s0036029514080059
Google Scholar
[9]
S. Livingstone, Rhenium, rhodium, palladium, osmium, iridium and platinum. Pergamon, Oxford, (1975).
Google Scholar
[10]
E.W. Dewing, E. Th. Van der Kouwe, Anodic phenomena in cryolite-alumina melts 1. Chronopotentiometry at gold and platinum anodes, J. Electrochem. Soc. 124 (1977) 58–64.
DOI: 10.1149/1.2133245
Google Scholar
[11]
A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed, John Wiley & Sons Inc., NY, (2001).
Google Scholar
[12]
A. Yu. Filatov, M.I. Borzenko, Z.V. Kuzminova, S. Yu. Vassiliev, S.M. Kazakov, E.V. Antipov, and V.V. Lunin, Electrochemical equilibria in copper/cryolite-alumina melt systems, Mendeleev Comm. 18 (2008) 244–245.
DOI: 10.1016/j.mencom.2008.09.004
Google Scholar
[13]
A.P. Khramov, V.A. Kovrov, Yu.P. Zaikov, V.M. Chumarev, Anodic behaviour of the Cu82Al8Ni5Fe5 alloy in low-temperature aluminium electrolysis, Corrosion Science 70 (2012) 194–202.
DOI: 10.1016/j.corsci.2013.01.029
Google Scholar
[14]
I. Gallino, M.E. Kassner, R. Busch, Oxidation and corrosion of highly alloyed Cu–Fe–Ni as inert anode material for aluminum electrowinning in as-cast and homogenized conditions, Corrosion Science 63 (2012) 293–303.
DOI: 10.1016/j.corsci.2012.06.013
Google Scholar