The Influence of Sodium Molybdate on the Rate of Corrosion of Aluminum in Phosphoric(V) Acid

Article Preview

Abstract:

Corrosion rates of aluminum in phosphoric (V) acid solutions were determined gravimetrically in a presence of sodium molybdate which acts as an inhibitor. Inhibition efficiencies were calculated. The most effective corrosion inhibition was observed for 0.5 M H3PO4 and 100 mM of Na2MoO4. Since insoluble corrosion products precipitated onto specimens and influenced the determined corrosion rates, an analysis of a morphology of the specimens was performed by using a scanning electron microscope. The corrosion products are composed of Mo, P, Al and O. An Mo/P atomic ratio varied between 0.8 and 1.6 depending on the concentrations of phosphoric (V) acid and sodium molybdate. For three concentrations of H3PO4, the concentration ranges of sodium molybdate, where the gravimetric method may be applied were determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-37

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.W. Revie, Uhlig's Corrosion handbook, third ed., John Wiley & Sons, Hoboken, (2011).

Google Scholar

[2] V.F. Henley, Anodic oxidation of aluminum and its alloys, Pergamon Press, Exeter, (1982).

Google Scholar

[3] P.G. Sheasby, R. Pinner, S. Wernick, The surface treatment and finishing of aluminium and its alloys, sixth ed., ASM International, Trowbridge, (2001).

Google Scholar

[4] D. Basketter, L. Horev, D. Slodovnik, S. Merimes, A. Trattner, A. Ingber, Investigation of the threshold for allergic reactivity to chromium, Contact Dermatitis. 44 (2001) 70–74.

DOI: 10.1034/j.1600-0536.2001.440202.x

Google Scholar

[5] A.D. Dayan, A.J. Paine, Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000, Hum. Exp. Toxicol. 20 (2001) 439–451.

DOI: 10.1191/096032701682693062

Google Scholar

[6] S.A. Katz, H. Salem, The toxicology of chromium with respect to its chemical speciation: A review, J. Appl. Toxicol. 13 (1993) 217–224.

DOI: 10.1002/jat.2550130314

Google Scholar

[7] V.S. Sastri, Green corrosion inhibitors: Theory and practice, John Wiley & Sons, Singapore, (2012).

Google Scholar

[8] Z. Szklarska-Śmiałowska, Inhibitory korozji metali, Wydawnictwa Naukowo-Techniczne, Warsaw, (1971).

Google Scholar

[9] E. Ghali, R.W. Revie, Corrosion resistance of aluminum and magnesium alloys: Understanding, performance, and testing, John Wiley & Sons, Hoboken, (2010).

Google Scholar

[10] A.Y. El-Etre, Inhibition of acid corrosion of aluminum using vanillin, Corr. Sci. 43 (2001) 1031–1039.

DOI: 10.1016/s0010-938x(00)00127-x

Google Scholar

[11] M.A. Amin, Q. Mohsen, O.A. Hazzazi, Synergistic effect of I− ions on the corrosion inhibition of Al in 1. 0 M phosphoric acid solutions by purine, Mater. Chem. Phys. 114 (2009) 908–914.

DOI: 10.1016/j.matchemphys.2008.10.057

Google Scholar

[12] A.M. Abdel-Gaber, E. Khamis, H. Abo-ElDahab, S. Adeel, Inhibition of aluminium corrosion in alkaline solutions using natural compound, Mater. Chem. Phys. 109 (2008) 297–305.

DOI: 10.1016/j.matchemphys.2007.11.038

Google Scholar

[13] A.I. Ali, N. Foaud, Inhibition of aluminum corrosion in hydrochloric acid solution using black mulberry extract, J. Mater. Environ. Sci. 3 (2012) 917–924.

Google Scholar

[14] E.E. Oguzie, Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract, Corr. Sci. 49 (2007) 1527–1539.

DOI: 10.1016/j.corsci.2006.08.009

Google Scholar

[15] M. Sangeetha, S. Rajendran, J. Sathiyabama, a Krishnaveni, Inhibition of corrosion of aluminium and its alloys by extracts of green inhibitors, Port. Electrochim. Acta. 31 (2013) 41–52.

DOI: 10.4152/pea.201301041

Google Scholar

[16] J.W.J. Silva, E.N. Codaro, R.Z. Nakazato, L.R.O. Hein, Influence of chromate, molybdate and tungstate on pit formation in chloride medium, Appl. Surf. Sci. 252 (2005) 1117–1122.

DOI: 10.1016/j.apsusc.2005.02.030

Google Scholar

[17] X. Li, S. Deng, H. Fu, Sodium molybdate as a corrosion inhibitor for aluminium in H3PO4 solution, Corr. Sci. 53 (2011) 2748–2753.

DOI: 10.1016/j.corsci.2011.05.002

Google Scholar

[18] K.C. Emregül, A.A. Aksüt, The effect of sodium molybdate on the pitting corrosion of aluminum, Corr. Sci. 45 (2003) 2415–2433.

DOI: 10.1016/s0010-938x(03)00097-0

Google Scholar

[19] R.L. Twite, G.P. Bierwagen, Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys, Prog. Org. Coat. 33 (1998) 91–100.

DOI: 10.1016/s0300-9440(98)00015-0

Google Scholar

[20] C. -S. Liang, Z. -F. Lv, Y. -L. Zhu, S. -A. Xu, H. Wang, Protection of aluminium foil AA8021 by molybdate-based conversion coatings, Appl. Surf. Sci. 288 (2014) 497–502.

DOI: 10.1016/j.apsusc.2013.10.060

Google Scholar

[21] A. Hamdy, A. Beccaria, P. Traverso, Corrosion protection of AA6061 T6-10 % Al2O3 composite by molybdate conversion coatings, J. Appl. Electrochem. 35 (2005) 467–472.

DOI: 10.1007/s10800-004-8329-3

Google Scholar

[22] A. Bielański, Podstawy chemii nieorganicznej, Wydawnictwo Naukowe PWN, Warsaw, (2013).

Google Scholar

[23] C.L. Rollinson, The chemistry of chromium, molybdenum and tungsten, Pergamon Press, (1975).

Google Scholar

[24] M.T. Pope, A. Müller, Polyoxometalate chemistry: An old field with new dimensions in several disciplines, Angew. Chem. Int. Ed. 30 (1991) 34–48.

DOI: 10.1002/anie.199100341

Google Scholar

[25] S.R. Crouch, H. V Malmstadt, A mechanistic investigation of molybdenum blue method for determination of phosphate, J. Am. Chem. Soc. 39 (1967) 1084–1089.

DOI: 10.1021/ac60254a027

Google Scholar