Explosions Caused by Corrosive Gases/Vapors

Article Preview

Abstract:

Gas/vapor cloud explosions and fires are responsible for most of the largest property loss events worldwide in the hydrocarbon industry. Motivation for this article is to summarize explosion pressure caused by corrosive gases/vapors in terms of mathematical modeling. Presented explosions based on real scenarios of accidents associated with transport and storage facilities with corrosive flammable chemicals. While explosions of pure flammable chemicals are well described in the literature, the information about explosions of corrosive and toxic flammable substances is rather scarce. This work aims at studying the explosion behavior of pure hydrogen-air, pure ammonia-air, ammonia-hydrogen-air, ammonia-methanol-air, ammonia-ethanol-air mixtures at different initial temperatures and pressures. The results of mathematical modeling of the calculated maximum explosion pressure are described.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-72

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.P. Lees, Loss Prevention in the Process Industries - Hazard Identification, Assessment, and Controls, vol. 1-3, forth ed., Butterworth-Heinemann, Oxford, (2012).

Google Scholar

[2] C. Movileanu, M. Mitu, V. Brinzea, A.M. Musuc, M. Mocanu, D. Razus, Adiabatic Flame Temperature of Fuel-Air Mixtures in Isobaric and Isochoric Combustion Processes, Rev. Chim. 62 (2011) 376-379.

Google Scholar

[3] A. Pekalski, H. P. Schildberg, P. S. D. Smallegange, S.M. Lemkowitz, J.F. Zevenbergen, M. Braithwaite, H.J. Pasman, Determination of the Explosion Behaviour of Methane and Propene in Air or Oxygen at Standard and Elevated Conditions, Process Saf. Environ. 83 (2005).

DOI: 10.1205/psep.04211

Google Scholar

[4] J. Turner, R. Pearson, B. Holland, R. Peck, Alcohol-Based Fuels in High Performance Engines, SAE Technical Paper 2007-01-0056.

DOI: 10.4271/2007-01-0056

Google Scholar

[5] A. E. Farrell, R. J. Plevin, B.T. Turner, M. O'HARE, D. M. Kammen, Ethanol can contribute to energy and environmental goals, Science 311 (2006) 506–508.

DOI: 10.1126/science.1121416

Google Scholar

[6] S. Kim, B.E. Dale, Global potential bioethanol production from wasted crops and crop residues, Biomass Bioenergy 26 (2004) 361–375.

DOI: 10.1016/j.biombioe.2003.08.002

Google Scholar

[7] M. J. Lau, M. W. Lau, C. Gunawan, B. E. Dale, Ammonia fiber expansion pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber for cellulosic ethanol production. Appl. Biochem. Biotechnol. 162 (2010) 1847-57.

DOI: 10.1007/s12010-010-8962-8

Google Scholar

[8] CH. Morley, GASEQ, A Chemical Equilibrium Program for Windows. Ver 0. 79 Jan 2005. Available at: http: /www. c. morley. dsl. pipex. com/gaseq079su. zip.

Google Scholar

[9] M. Skřínská, J. Skřínský, P. Dolníček, P. Lukešová, R. Přichystalová, C. Serafínová, BLEVE - Cases, Causes, Consequences and Prevention, Mater. Sci. Forum 811 (2014) 91-94.

DOI: 10.4028/www.scientific.net/msf.811.91

Google Scholar

[10] M. Skřínská, J. Skřínský, V. Sluka, J. Senčík, S. Malý, G. Tetu, Mathematical models for the prediction of heat flux from fire balls, WSEAS Transactions HAMT 9 (2014) 243-250.

Google Scholar

[11] J. Skřínský, V. Sluka, J. Senčík, M. Pražáková, S. Malý, Application of emergency planning criteria for the control of major accident hazards-calculation of the consequences of fire accidents (2014).

DOI: 10.1201/b15938-20

Google Scholar