Numerical Studies of Discrete Quasibreathers in Graphene in the Framework of Density Functional Theory

Article Preview

Abstract:

Discrete breathers in graphene are studied by means of ab initio calculations using methods of density functional theory. It is shown that in the graphene under uniaxial strain applied in “zigzag” direction discrete breathers exist with frequencies inside the gap of phonon spectrum of the system. Breathers have been observed polarized along the “armchair” direction of graphene. The frequency on the amplitude dependency of studied dynamical objects corresponds to the soft type of nonlinearity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-218

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Ovchinnikov, Localized long living vibrational states in molecular crystals, JETP. 51 (1969) 263-270.

Google Scholar

[2] A.S. Dolgov, Localization of oscillations in nonlinear crystal structure, Solid State Physics 28 (1986) 907.

Google Scholar

[3] A. Sievers and S. Takeno, Intrinsic localized modes in anharmonic crystals, Phys. Rev. Lett. 61 (1988) 970.

DOI: 10.1103/physrevlett.61.970

Google Scholar

[4] S. Flach and C. R. Willis, Discrete breathers, Phys. Rep. 295 (1998) 181–264.

Google Scholar

[5] M. E. Manley, A.J. Sievers, J. W. Lynn et al., Intrinsic Localized Modes Observed in the High Temperature Vibrational Spectrum of NaI, Phys. Rev. B 79 (2009) 134304.

DOI: 10.1103/physrevb.79.134304

Google Scholar

[6] A. J. Sievers, M. Sato, J. B. Page and T. Rössler, Thermally populated intrinsic localized modes in pure alkali halide crystals, Phys. Rev. B 88 (2013) 104305.

DOI: 10.1103/physrevb.88.104305

Google Scholar

[7] S. A. Kiselev and A.J. Sievers, Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals, Phys. Rev. B 55 (1997) 5755.

DOI: 10.1103/physrevb.55.5755

Google Scholar

[8] L. Z. Khadeeva and S.V. Dmitriev, Discrete breathers in crystals with NaCl structure, Phys. Rev. B 81 (2010) 214306.

DOI: 10.1103/physrevb.81.214306

Google Scholar

[9] M. Haas, V. Hizhnyakov, A. Shelkan et al., Prediction of high-frequency intrinsic localized modes in Ni and Nb, Phys. Rev. B 84 (2011) 144303.

DOI: 10.1103/physrevb.84.144303

Google Scholar

[10] R. T. Murzaev, A. A. Kistanov, V. I. Dubinko, D. A. Terentyev, S. V. Dmitriev, Moving Discrete Breathers in Bcc Metals V, FE and W, Comput. Mater. Sci. 98 (2015) 88.

DOI: 10.1016/j.commatsci.2014.10.061

Google Scholar

[11] N.N. Medvedev, M.D. Starostenkov and M.E. Manley, Energy localization on the Al sublattice of Pt3Al with L12 order, J. Appl. Phys. 114 (2013) 213506.

Google Scholar

[12] L. Z. Khadeeva, S. V. Dmitriev, Yu. S. Kivshar, Discrete breathers in deformed graphene, JETP Letters 97(7) (2011) 580.

DOI: 10.1134/s0021364011190106

Google Scholar

[13] B. Liu, J. A. Baimova, S. V. Dmitriev et al., Discrete breathers in hydrogenated graphene, J. Phys. D: Appl. Phys. 46 (2013) 305302.

DOI: 10.1088/0022-3727/46/30/305302

Google Scholar

[14] J.A. Baimova, E.A. Korznikova, I.P. Lobzenko, S.V. Dmitriev, Discrete breathers in carbon and hydrocarbon nanostructures, Reviews on Advanced Materials Science, 42 (2015) 68-82.

DOI: 10.4028/www.scientific.net/msf.845.255

Google Scholar

[15] W. Kohn, Nobel Lecture, Rev. Mod. Phys. 71(5) (1999) 1253.

Google Scholar

[16] G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko and D. S. Ryabov, Properties of discrete breathers in graphane from ab initio simulations, Phys. Rev. B 90 (2014) 045432.

DOI: 10.1103/physrevb.90.045432

Google Scholar

[17] X. Gonze, et al. Comput. Phys. Commun. 180 (2009) 2582.

Google Scholar

[18] www. abinit. org.

Google Scholar

[19] G. M. Chechin, G. S. Dzhelauhova, Quasibreathers as a generalization of the concept of discrete breathers, J. Sound Vib. 322 (2009) 490.

Google Scholar

[20] G. M. Chechin, I. P. Lobzenko, Ab initio refining of quasibreathers in graphane, Letters on materials 4(4) (2014) 226.

DOI: 10.22226/2410-3535-2014-4-226-229

Google Scholar

[21] Y. Doi, A. Nakatani, Numerical study on unstable perturbation of intrinsic localized modes in graphene, JSME Int J A-Solid M, 6 (2012) 71.

DOI: 10.1299/jmmp.6.71

Google Scholar