Structure and Properties of Diamond-Like Phases

Article Preview

Abstract:

The geometrically optimized structures of twenty three carbon diamond-like phases obtained by linking graphene layers, carbon nanotubes, and three-dimensional graphites has been calculated using the density functional theory method and the structural parameters, densities, sublimation energies, electronic properties, and bulk moduli have been calculated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-234

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.P. Bundy and J.S. Kasper, Hexagonal diamond – a new form of carbon, J. Chem. Phys. 46 (1967) 3437-3446.

DOI: 10.1063/1.1841236

Google Scholar

[2] N.N. Matyushenko, V.E. Strel'nitskii, and V.A. Gusev, A dense new version of crystalline carbon C8, JETP Lett. 30 (1979) 199-202.

Google Scholar

[3] R.B. Aust and H.G. Drickamer, Carbon: a new crystalline phase, Science 140 (1963) 817-819.

DOI: 10.1126/science.140.3568.817

Google Scholar

[4] Z. Wang, Y. Zhao, K. Tait, et al., A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes, Proc. Natl. Acad. Sci. USA 101 (2004) 13699-13702.

DOI: 10.1073/pnas.0405877101

Google Scholar

[5] Q. Huang, D. Yu, Bo Xu, et al., Nanotwinned diamond with unprecedented hardness and stability, Nature 510 (2014) 250-253.

DOI: 10.1038/nature13381

Google Scholar

[6] S.M. Pimenov, A.A. Khomich, I.I. Vlasov, et al., Metastable carbon allotropes in picosecond-laser-modified diamond, Appl. Phys. A 116 (2014) 545-554.

DOI: 10.1007/s00339-014-8530-0

Google Scholar

[7] V.L. Bekenev and V.V. Pokropivny, Electronic structure and elastic moduli of the simple cubic fullerite C24 – a new allotropic carbon modification, Phys. Solid State 48 (2006) 1405-1410.

DOI: 10.1134/s1063783406070298

Google Scholar

[8] V.A. Greshnyakov and E.A. Belenkov, Structures of diamond-like phases, J. Exp. Theor. Phys. 113 (2011) 86-95.

DOI: 10.1134/s1063776111060173

Google Scholar

[9] A. Pokropivny, S. Volz, C8 phase": supercubane, tetrahedral, BC-8 or carbon sodalite, Phys. Status Solidi B 249 (2012) 1704-1708.

DOI: 10.1002/pssb.201248185

Google Scholar

[10] A.L. Ivanovskii, Search for superhard carbon: between graphite and diamond, J. Superhard Mater. 35 (2013) 1-14.

DOI: 10.3103/s1063457613010012

Google Scholar

[11] E.A. Belenkov and V.A. Greshnyakov, New polymorphic types of diamond, J. Struct. Chem. 55 (2014) 409-417.

DOI: 10.1134/s0022476614030032

Google Scholar

[12] E.A. Belenkov and V.A. Greshnyakov, New structural modifications of diamond: LA9, LA10, and CA12, J. Exp. Theor. Phys. 119 (2014) 101-106.

DOI: 10.1134/s1063776114060090

Google Scholar

[13] S. -P. Gao, Band gaps and dielectric functions of cubic and hexagonal diamond polytypes calculated by many-body perturbation theory, Phys. Status Solidi B 252 (2015) 235-242.

DOI: 10.1002/pssb.201451197

Google Scholar

[14] E.A. Belenkov and V.A. Greshnyakov, Classification schemes of carbon phases and nanostructures, New Carbon Mater. 28 (2013) 273-283.

DOI: 10.1016/s1872-5805(13)60081-5

Google Scholar

[15] E.A. Belenkov and V.A. Greshnyakov, Classification of structural modifications of carbon, Phys. Solid State 55 (2013) 1754-1764.

DOI: 10.1134/s1063783413080039

Google Scholar

[16] P. Giannozzi, S. Baroni, N. Bonini, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 (2009) 395502.

Google Scholar

[17] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (3B) (1964) 864-871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[18] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648-5652.

DOI: 10.1063/1.464913

Google Scholar

[19] H.J. Monkhorst and J.D. Pack, Special points for Brillonin-zone integrations, Phys. Rev. B 13 (1976) 5188-5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[20] V.A. Greshnyakov and E.A. Belenkov, Technique for calculating the bulk modulus, Russ. Phys. J. 57 (2014) 731-737.

DOI: 10.1007/s11182-014-0297-4

Google Scholar

[21] C. Kittel, Introduction to Solid States Physics, seventh ed., Wiley, New York, (1996).

Google Scholar

[22] F. Occelli, P. Loubeyre, and R. Letoullec, Properties of diamond under hydrostatic pressures up to 140 GPa, Nat. Mater. 2 (2003) 151-154.

DOI: 10.1038/nmat831

Google Scholar

[23] R.H. Baughman, A.Y. Liu, C. Cui, et al., A carbon phase that graphitizes at room temperature, Synth. Met. 86 (1997) 2371-2374.

DOI: 10.1016/s0379-6779(97)81165-4

Google Scholar

[24] Gmelins Handbuch der Anorganischen Chemie, Part B: Silicium, eighth ed., Chemie, Weinheim, (1959).

Google Scholar