Crystal Structure of L6, L4-8, L3-12 and L4-6-12 Graphene Polymorphs

Article Preview

Abstract:

Calculations of the structure and electronic properties of crystals composed of graphene layers L6, L4-8, L3-12 and L4-6-12 were performed within the framework of density functional theory (DFT) with generalized gradient approximations (GGA). It was found out, that crystals of the four main types of graphene are to have metallic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-250

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Exfoliating graphite yields stable carbon films just a few atoms thick, which on a silicon substrate act as a new type of strong semimetal transistor, Science 306 (2004) 666-669.

Google Scholar

[2] A.N. Enyashin, A.L. Ivanovskii, Graphene allotropes, Phys. Status Solidi B. 248 (2011) 1879-1883.

DOI: 10.1002/pssb.201046583

Google Scholar

[3] E.A. Belenkov, V.A. Greshnyakov, Classification of structural modifications of carbon, Phys. Solid State 55 (2013) 1754-1764.

DOI: 10.1134/s1063783413080039

Google Scholar

[4] E.A. Belenkov, V.A. Greshnyakov, Classification schemes for carbon phases and nanostructures, New Carbon Mater 28 (2013) 273-282.

DOI: 10.1016/s1872-5805(13)60081-5

Google Scholar

[5] J.J.P. Stewart, Optimization of parameters for semiempirical methods I. Method, J. Comput. Chem 10 (1989) 209-220.

Google Scholar

[6] W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley, New York, (2002).

Google Scholar

[7] J.P. Perdew, J.A. Chevary, S.H. Vosko et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys Rev. B 46 (1992) 6671-6687.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[8] A.I. Kitaigorodsky, Molecular Crystals, Nauka, Moscow, (1971).

Google Scholar

[9] E.A. Belenkov, Formation of Graphite Structure in Carbon Crystallites, Inorg. Mat. 37 (2001) 928-934.

Google Scholar

[10] E.A. Belenkov, Modeling of Formation of a Crystal Structure in a Carbon Fiber, Crystallogr. Rep. 44 (1999) 749-754.

Google Scholar

[11] E.A. Belenkov, V.V. Mavrinsky, Crystal structure of a perfect carbyne, Crystallogr. Rep. 53 (2008) 83-87.

DOI: 10.1134/s1063774508010100

Google Scholar

[12] L.A. Girifalco, R.A. Lad, Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System, J. Chem. Phys. 25 (1956) 693-696.

DOI: 10.1063/1.1743030

Google Scholar

[13] D.R. Lide, CRC Handbook of chemistry and physics, 86th ed., CRC Press, London, (2005).

Google Scholar

[14] G. Graziano, J. Klimes, F. Fernandez-Alonso, A. Michaelides, Improved description of soft layered materials with van der Waals density functional theory, J. Phys.: Condens. Matter 24 (2012) 424216.

DOI: 10.1088/0953-8984/24/42/424216

Google Scholar

[15] H.O. Pierson, Handbook of carbon, graphite, diamond, and fullerenes: properties, processing and applications, Noyes, Park Ridge, (1993).

Google Scholar

[16] F. Diederich, Y. Rubin, Synthetic Approaches toward Molecular and Polymeric Carbon Allotropes, Angew. Chem. Int. Ed. Engl. 31 (1992) 1101.

DOI: 10.1002/anie.199211013

Google Scholar

[17] F. Diederich, Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds, Nature 369 (1994) 199-207.

DOI: 10.1038/369199a0

Google Scholar