Clusters of Discrete Breathers in Carbon and Hydrocarbon Nanostructures

Article Preview

Abstract:

Clusters of discrete breathers in graphene and graphane are studied by means of molecular dynamics simulations. For both structures, two-breather and three-breather clusters are considered. Energy exchange between discrete breathers in clusters is strongly dependent on the initial conditions such as initial amplitude and phase. Even small changes in these initial parameters can lead to the considerable changes in the behavior or breather clusters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-258

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

DOI: 10.1126/science.1102896

Google Scholar

[2] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Control of graphene's properties by reversible hydrogenation: evidence for graphane, Science 323 (2009) 610-613.

Google Scholar

[3] K. Doi, I. Onishi, and S. Kawano, Dissociative adsorption of H2 molecules on steric graphene surface: Ab initio MD study based on DFT, Comput. Theor. Chem. 994 (2012) 54-64.

DOI: 10.1016/j.comptc.2012.06.013

Google Scholar

[4] I.A. Ovid'ko, Mechanical properties of graphene, Reviews on Advanced Materials Science 34 (2013) 1-11.

Google Scholar

[5] L. Zhang, F. Zhang, X. Yang, et al., Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors Sci. Rep. 3 (2013) 1408.

DOI: 10.1038/srep01408

Google Scholar

[6] Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi and R. B. Kaner, Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44 (2015) 3639-3665.

DOI: 10.1039/c4cs00316k

Google Scholar

[7] I.A. Ovid'ko, How to fabricate new carbon nanostructures through grain boundary engineering in graphene, Reviews on Advanced Materials Science 32 (2012) 1-6.

Google Scholar

[8] G. E. Froudakis, Hydrogen storage in nanotubes & nanostructures, Materials Today 14 (2011) 324-328.

DOI: 10.1016/s1369-7021(11)70162-6

Google Scholar

[9] S. Flach and C. R. Willis, Discrete breathers, Phys. Rep. 295 (1998) 181–264.

Google Scholar

[10] G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko and D. S. Ryabov, Properties of discrete breathers in graphane from ab initio simulations, Phys. Rev. B 90 (2014) 045432.

DOI: 10.1103/physrevb.90.045432

Google Scholar

[11] J. A. Baimova, S. V. Dmitriev and K. Zhou, Discrete breather clusters in strained graphene, Europhys. Lett. 100 (2012) 36005.

DOI: 10.1209/0295-5075/100/36005

Google Scholar

[12] S.V. Dmitriev, Gap discrete breathers in 2D and 3D crystals, Letters on Materials, 1 (2011) 78.

Google Scholar

[13] J.A. Baimova, E.A. Korznikova, I.P. Lobzenko, S.V. Dmitriev, Discrete breathers in carbon and hydrocarbon nanostructures, Reviews on Advanced Materials Science, 42 (2015) 68-82.

DOI: 10.4028/www.scientific.net/msf.845.255

Google Scholar

[14] A. V. Savin and Y. S. Kivshar, Surface solitons at the edges of graphene nanoribbons, Europhys. Lett. 89 (2010) 46001.

DOI: 10.1209/0295-5075/89/46001

Google Scholar

[15] E.A. Korznikova, A.V. Savin, Yu.A. Baimova, et al., Discrete breather on the edge of the graphene sheet with the armchair orientation, JETP Letters, 96 (2012) 222-6.

DOI: 10.1134/s0021364012160059

Google Scholar

[16] B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu and K. Zhou, Discrete breathers in hydrogenated graphene, J. Phys. D: Appl. Phys. 46 (2013) 305302.

DOI: 10.1088/0022-3727/46/30/305302

Google Scholar

[17] Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani and T. Kitamura, Excitation of intrinsic localized modes in a graphene sheet, Europhys. Lett. 80 (2007) 40008.

DOI: 10.1209/0295-5075/80/40008

Google Scholar

[18] T. Shimada, D. Shirasaki, T. Kitamura, Stone-Wales transformations triggered by intrinsic localized modes in carbon nanotubes, Phys. Rev. B 81 (2010) 035401.

DOI: 10.1103/physrevb.81.035401

Google Scholar

[19] T. Shimada, et al., Influence of nonlinear atomic interaction on excitation of intrinsic localized modes in carbon nanotubes, Physica D 239 (2010) 407-413.

DOI: 10.1016/j.physd.2010.01.001

Google Scholar

[20] J. A. Baimova, B. Liu, K. Zhou, Folding and crumpling of graphene under biaxial compression, Letters on Materials. 4 (2014) 96-99.

DOI: 10.22226/2410-3535-2014-2-96-99

Google Scholar

[21] B. Liu, J.A. Baimova, C.D. Reddy, A. Wing-Keung Law, S.V. Dmitriev, H. Wu, and K. Zhou, Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation, ACS Appl. Mater. Interfaces 6 (2014) 18180−8.

DOI: 10.1021/am505173s

Google Scholar

[22] A.V. Orlov, I.A. Ovid'ko, Mechanical properties of graphene nanoribbons: a selective review of computer simulations, Rev. Adv. Mater. Sci. 40 (2015) 249-256.

Google Scholar