[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[2]
D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Control of graphene's properties by reversible hydrogenation: evidence for graphane, Science 323 (2009) 610-613.
Google Scholar
[3]
K. Doi, I. Onishi, and S. Kawano, Dissociative adsorption of H2 molecules on steric graphene surface: Ab initio MD study based on DFT, Comput. Theor. Chem. 994 (2012) 54-64.
DOI: 10.1016/j.comptc.2012.06.013
Google Scholar
[4]
I.A. Ovid'ko, Mechanical properties of graphene, Reviews on Advanced Materials Science 34 (2013) 1-11.
Google Scholar
[5]
L. Zhang, F. Zhang, X. Yang, et al., Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors Sci. Rep. 3 (2013) 1408.
DOI: 10.1038/srep01408
Google Scholar
[6]
Y. Shao, M. F. El-Kady, L. J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi and R. B. Kaner, Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44 (2015) 3639-3665.
DOI: 10.1039/c4cs00316k
Google Scholar
[7]
I.A. Ovid'ko, How to fabricate new carbon nanostructures through grain boundary engineering in graphene, Reviews on Advanced Materials Science 32 (2012) 1-6.
Google Scholar
[8]
G. E. Froudakis, Hydrogen storage in nanotubes & nanostructures, Materials Today 14 (2011) 324-328.
DOI: 10.1016/s1369-7021(11)70162-6
Google Scholar
[9]
S. Flach and C. R. Willis, Discrete breathers, Phys. Rep. 295 (1998) 181–264.
Google Scholar
[10]
G. M. Chechin, S. V. Dmitriev, I. P. Lobzenko and D. S. Ryabov, Properties of discrete breathers in graphane from ab initio simulations, Phys. Rev. B 90 (2014) 045432.
DOI: 10.1103/physrevb.90.045432
Google Scholar
[11]
J. A. Baimova, S. V. Dmitriev and K. Zhou, Discrete breather clusters in strained graphene, Europhys. Lett. 100 (2012) 36005.
DOI: 10.1209/0295-5075/100/36005
Google Scholar
[12]
S.V. Dmitriev, Gap discrete breathers in 2D and 3D crystals, Letters on Materials, 1 (2011) 78.
Google Scholar
[13]
J.A. Baimova, E.A. Korznikova, I.P. Lobzenko, S.V. Dmitriev, Discrete breathers in carbon and hydrocarbon nanostructures, Reviews on Advanced Materials Science, 42 (2015) 68-82.
DOI: 10.4028/www.scientific.net/msf.845.255
Google Scholar
[14]
A. V. Savin and Y. S. Kivshar, Surface solitons at the edges of graphene nanoribbons, Europhys. Lett. 89 (2010) 46001.
DOI: 10.1209/0295-5075/89/46001
Google Scholar
[15]
E.A. Korznikova, A.V. Savin, Yu.A. Baimova, et al., Discrete breather on the edge of the graphene sheet with the armchair orientation, JETP Letters, 96 (2012) 222-6.
DOI: 10.1134/s0021364012160059
Google Scholar
[16]
B. Liu, J. A. Baimova, S. V. Dmitriev, X. Wang, H. Zhu and K. Zhou, Discrete breathers in hydrogenated graphene, J. Phys. D: Appl. Phys. 46 (2013) 305302.
DOI: 10.1088/0022-3727/46/30/305302
Google Scholar
[17]
Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani and T. Kitamura, Excitation of intrinsic localized modes in a graphene sheet, Europhys. Lett. 80 (2007) 40008.
DOI: 10.1209/0295-5075/80/40008
Google Scholar
[18]
T. Shimada, D. Shirasaki, T. Kitamura, Stone-Wales transformations triggered by intrinsic localized modes in carbon nanotubes, Phys. Rev. B 81 (2010) 035401.
DOI: 10.1103/physrevb.81.035401
Google Scholar
[19]
T. Shimada, et al., Influence of nonlinear atomic interaction on excitation of intrinsic localized modes in carbon nanotubes, Physica D 239 (2010) 407-413.
DOI: 10.1016/j.physd.2010.01.001
Google Scholar
[20]
J. A. Baimova, B. Liu, K. Zhou, Folding and crumpling of graphene under biaxial compression, Letters on Materials. 4 (2014) 96-99.
DOI: 10.22226/2410-3535-2014-2-96-99
Google Scholar
[21]
B. Liu, J.A. Baimova, C.D. Reddy, A. Wing-Keung Law, S.V. Dmitriev, H. Wu, and K. Zhou, Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation, ACS Appl. Mater. Interfaces 6 (2014) 18180−8.
DOI: 10.1021/am505173s
Google Scholar
[22]
A.V. Orlov, I.A. Ovid'ko, Mechanical properties of graphene nanoribbons: a selective review of computer simulations, Rev. Adv. Mater. Sci. 40 (2015) 249-256.
Google Scholar