[1]
M. Jørgensen, K. Norrman, F. C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells 92 (7) (2008) 686-714.
DOI: 10.1016/j.solmat.2008.01.005
Google Scholar
[2]
D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J. A. Voigt, J. W. P. Hsu, Effect of polymer processing on the performance of poly (3-hexylthiophene)/ ZnO nanorod photovoltaic devices, J. Phys. Chem. C 111 (44) (2007).
DOI: 10.1021/jp0757816
Google Scholar
[3]
E. L. Lim, C. C. Yap, M. Yahaya, M. M. Salleh, Enhancement of ZnO nanorod arrays-based inverted type hybrid organic solar cell using spin-coated Eosin-Y, Semicond. Sci. Technol. 28 (2013) 045009(1)- 045009(6).
DOI: 10.1088/0268-1242/28/4/045009
Google Scholar
[4]
R. T. Ginting, C. C. Yap, M. Yahaya, M. M. Salleh, Solution-processed Ga-doped ZnO nanorod arrays as electron acceptors in organic solar cells, ACS Appl. Mater. Interfaces 6 (7) (2014) 5308–5318.
DOI: 10.1021/am5007832
Google Scholar
[5]
C. -T. Chen, F. -C. Hsu, Y. -M. Sung, H. -C. Liao, W. -C. Yen, W. -F. Su, Y. -F. Chen, Effects of metal-free conjugated oligomer as a surface modifier in hybrid polymer/ZnO solar cells, Sol. Energy Mater. Sol. Cells 107 (2012) 69-74.
DOI: 10.1016/j.solmat.2012.08.001
Google Scholar
[6]
Y. Chen, M. Elshobaki, nZ. Ye, J. -M. Park, M. A. Noack, K. -M. Hode. S. Chaudhary, Microlens array induced light absorption enhancement in polymer solar cells, Phys. Chem. Chem. Phys. 15 (2013) 4297-4302.
DOI: 10.1039/c3cp50297j
Google Scholar
[7]
Y. -Y. Lin, Y. -Y. Lee, L. Chang, J. -J. Wu, C. -W. Chen, The influence of interface modifier on the performance of nanostructured ZnO/polymer hybrid solar cells, Appl. Phys. Lett. 94 (2009) 063308(1)-063308(3).
DOI: 10.1063/1.3080203
Google Scholar
[8]
Y. J. Kim, T. K. An, S. -J. Oh, D. S. Chung, C.E. Park, Surface modification with MK-2 organic dye in a ZnO/P3HT hybrid solar cell: Impact on device performance, APL Mat. 2 (2014) 076108 (1)-076108(6).
DOI: 10.1063/1.4886217
Google Scholar
[9]
J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6. 5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale 3 (2011) 4088-4093.
DOI: 10.1039/c1nr10867k
Google Scholar
[10]
Q. Wang, J. Yun, M. Zhang, H. Chen, Z. G. Chen, L. Wang, Insights into the liquid state of organo-lead halide perovskites and their new roles in dye-sensitized solar cells, J. Mater. Chem. A 2 (2014) 10355-10358.
DOI: 10.1039/c4ta01105h
Google Scholar
[11]
C. Zuo, L. Ding, Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm, J. Mater. Chem. A 3 (2015) 9063-9066.
DOI: 10.1039/c4ta04482g
Google Scholar
[12]
M. I. Dar, N. Arora, P. Gao,S. Ahmad, M. Grätzel, M. K. Nazeeruddin, Investigation Regarding the Role of Chloride in Organic–Inorganic Halide Perovskites Obtained from Chloride Containing Precursors, Nano Lett. 14 (2014) 6991-6996.
DOI: 10.1021/nl503279x
Google Scholar
[13]
J. Burschka, N. Pellet, S. -J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 (2013) 316–319.
DOI: 10.1038/nature12340
Google Scholar
[14]
S. M. Joseph, V. K. Prashant, Band filling with free charge carriers in organometal halide perovskites, Nature Photonics 8 (2014) 737–743.
DOI: 10.1038/nphoton.2014.171
Google Scholar
[15]
O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin , H. J. Bolink, Perovskite solar cells employing organic charge-transport layers, Nature Photonics 8 (2014) 128–132.
DOI: 10.1038/nphoton.2013.341
Google Scholar