Influence of Graphene (0.01 wt. %) on Structural, Morphological and Photovoltaic Properties of TiO2-Based DSSC Using Electrolyte Gel

Article Preview

Abstract:

Titanium dioxide (TiO2) based dye-sensitized solar cells (DSSCs) doped with reduced graphene oxide, rGO also known as graphene were fabricated at concentrations of 0.01 wt.% . The performance of TiO2/graphene based DSSC and TiO2 based DSSC were studied using electrolytes; PAN-based gel electrolyte. The thin films were characterized using several characterizations such as scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and current-voltage (I-V) measurement. The micrograph images obtained by SEM demonstrated that the thin films are highly porous. The XRD characterization showed that the crystalline particle of thin films is an anatase state and high percentage of carbon composition can be determined using EDX analysis. Through I-V characteristic, the current density Jsc, open circuit-voltage Voc, fill-factor FF, and efficiency η of the TiO2-based DSSC were 0.196 mA/cm2, 0.44 V, 0.496 and 0.043% respectively. I-V characteristic showed an increase in values for rGO/TiO2 based DSSC such as Jsc = 1.177 mA/cm2, Voc = 0.66 V, FF = 0.656 and η = 0.509%. The addition of rGO concentration has improved the efficiency of DSSC while the use of electrolyte gel can sustain the stability of the cell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

298-307

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Wang, X. Li, J. Chen, X. Tao, Morphological and electron transport studies in ZnO dye-sensotozed solar cells incorporating multi- and single-walled carbon nanotubes, Chemical. Engineering. Journal. 198-199 (2012), p.547.

Google Scholar

[2] A. Jena, S. P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H. K. Narula, S. Mallick, P. Bhargava, Dye sensitized solar cells: A review, Trans. Ind. Ceram. Soc Vol. 71(2012), p.1.

DOI: 10.1080/0371750x.2012.689503

Google Scholar

[3] B. Y. S. Chang, N. M Huang, M. N. An'amt, A. R. Marlinda, Y. Norazriena, M. R. Muhamad, I. Harrison, H. N. Lim, C. H. Chia, Facile hydrothermal preparation of titanium dioxide decorated reduced graphene oxide nanocomposite, International Journal of Nanomedicine. 7 (2012).

DOI: 10.2147/ijn.s28189

Google Scholar

[4] A.T. Raghavender, A.P. Samantilleke, Pedro Sa, B.G. Almeida, M.I. Vasilevskiy, Nguyen Hoa Hong, Simple way to make Anatase TiO films on FTO glass for promising solar cells, Materials Letters. 69 (2012) 59–62.

DOI: 10.1016/j.matlet.2011.11.067

Google Scholar

[5] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable and Sustainable Energy Reviews. 16 (2012) 5848–5860.

DOI: 10.1016/j.rser.2012.04.044

Google Scholar

[6] H. M. Upadhyaya, S. Senthilarasu, M. Hsu, D. Kishore Kumar. Recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies, Solar Energy Materials & Solar Cells. 119 (2013) 291–295.

DOI: 10.1016/j.solmat.2013.08.031

Google Scholar

[7] M. A. K. L. Dissanayake, L. R. A. K Bandara, R. S. P. Bokalawala, P. A. R. D Jayathilaka, O. A. Ileperuma, S. Somasundara, A novel gel polymer electrolyte based on polyacrylonitrile PAN and its application in a solar cell, Materials Research Bulletin. 37 (2002).

DOI: 10.1016/s0025-5408(02)00712-2

Google Scholar

[8] X.J. Liu, L.K. Pan, Q.F. Zhao, T. Lv, G. Zhu, T.Q. Chen, T. Lu, Z. Sun, C.Q. Sun, UVassisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI), Chem. Eng. J. 183(2012).

DOI: 10.1016/j.cej.2011.12.068

Google Scholar

[9] H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano 4 (2010) 380–386.

DOI: 10.1021/nn901221k

Google Scholar

[10] Q. Li, B.D. Guo, J.G. Yu, J.R. Ran, B.H. Zhang, H.J. Yan, J.R. Gong Highly efficient visible-light driven photocatalytic hydrogen production of CdS-cluster decorated graphene nanosheets J. Am. Chem. Soc. Vol. 133 (2011), p.10878.

DOI: 10.1021/ja2025454

Google Scholar

[11] A-Young Kim, Jieun Kim, Min Young Kim, Seung Won Ha, Ngyen Thi Thuy Tien, Misook Kang, Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO Anode Films, Bull. Korean Chem. Soc. 33 (2012) 3355-3360.

DOI: 10.5012/bkcs.2012.33.10.3355

Google Scholar

[12] A. Omar, H. Abdullah, M. A. Yarmo, S. Shaari, M. R. Taha. Morphological and electron transport studies in ZnO dye-sensotozed solar cells incorporating multi- and single-walled carbon nanotubes, Journal of Physics D: Applied Physics 46 (2013).

DOI: 10.1088/0022-3727/46/16/165503

Google Scholar

[13] A. B. F. Martinson, M. S. Goes, F. Fabregat-Santiago, J. Bisquert, M. J. Pellin, J. T. Hupp, Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics, The Journal of Physical Chemistry A. 113 (2009).

DOI: 10.1021/jp810406q

Google Scholar

[14] J. Bisquert, Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer, J Phys Chem B. 106 2002 325-333.

DOI: 10.1021/jp011941g

Google Scholar

[15] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda. Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy, J Phys Chem B. 110(28) 2006 13872-13880.

DOI: 10.1021/jp061693u

Google Scholar

[16] J. Deng, Y. Zheng, Q. Hou, J. Chen, W. Zhou, X. Tao, Solid-state dye-sensitized hierarchically structured ZnO solar cells, Electrochimica Acta. 56 2011 4176-4180.

DOI: 10.1016/j.electacta.2011.01.099

Google Scholar

[17] C. H. Hsu, J. R. Wu, L. C. Chen, P. S. Chan, C. C. Chen, Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transport Layer. Advances in Materials Science and Engineering, 2014 107352 (4 pages).

DOI: 10.1155/2014/107352

Google Scholar