[1]
W. N. Wan Jalal, H. Abdullah, M. S. Zulfakar, B. Bais, S. Shaari,M. T. Islam, ZnAl2O4-Based Microwave Dielectric Ceramics as GPS Patch Antenna: A Review, Transactions of the Indian Ceramic Society 72, (2013) 215-224.
DOI: 10.1080/0371750x.2013.868323
Google Scholar
[2]
S. B. Narang,S. Bahel, Low loss dielectric ceramics for microwave applications: a review, Journal of Ceramic Processing Research 11, (2010) 316-321.
Google Scholar
[3]
H. Ohsato, Research and Development of Microwave Dielectric Ceramics for Wireless Communications, Journal of the Ceramic Society of Japan 113, (2005) 703-711.
DOI: 10.2109/jcersj.113.703
Google Scholar
[4]
H. Abdullah, W. Jalal,M. Zulfakar, Miniaturization of GPS patch antennas based on novel dielectric ceramics Zn(1−x)MgxAl2O4 by sol–gel method, Journal of Sol-Gel Science and Technology 69, (2014) 429-440.
DOI: 10.1007/s10971-013-3239-7
Google Scholar
[5]
W. Lei, W. Z. Lu, X. H. Wang, F. Liang,J. Wang, Phase Composition and Microwave Dielectric Properties of ZnAl2O4–Co2TiO4 Low-Permittivity Ceramics with High Quality Factor, Journal of the American Ceramic Society 94, (2011) 20-23.
DOI: 10.1111/j.1551-2916.2010.04247.x
Google Scholar
[6]
H. Abdullah, M. S. Zulfakar, W. N. W. Jalal, M. T. Islam,S. Shaari, Synthesis and fabrication of (1− x) ZnAl2O4–xSiO2 thin films to be applied as patch antennas, Journal of Sol-Gel Science and Technology 69, (2014) 183-192.
DOI: 10.1007/s10971-013-3202-7
Google Scholar
[7]
W. Jalal, H. Abdullah, M. Zulfakar, M. Islam, B. Bais,S. Shaari, GPS patch antenna performance by modification of Zn(1−x)CaxAl2O4-based microwave dielectric ceramics, Journal of Sol-Gel Science and Technology 71, (2014) 477-489.
DOI: 10.1007/s10971-014-3397-2
Google Scholar
[8]
C. L. Huang, T. J. Yang,C. C. Huang, Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator, Journal of the American Ceramic Society 92, (2009) 119-124.
Google Scholar
[9]
W. Lei, W. Z. Lu, J. H. Zhu,X. H. Wang, Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites, Materials Letters 61, (2007) 4066-4069.
DOI: 10.1016/j.matlet.2007.01.017
Google Scholar
[10]
W. Lei, W. -Z. Lu, J. -H. Zhu,X. Ye, Effects of heating rate on microstructures and microwave dielectric properties of (1-x)ZnAl2O4–xTiO2 (x = 0. 21) ceramics, Ceramics International 35, (2009) 277-280.
DOI: 10.1016/j.ceramint.2007.10.021
Google Scholar
[11]
L. Wen, -. Z. L. Wen, W. Xiao-Chuan,W. Shuai, Synthesis of (1−x)ZnAl2O4–xTiO2 microwave dielectric ceramics by molten-salt process, Journal of Alloys and Compounds 508, (2010) 507–511.
DOI: 10.1016/j.jallcom.2010.08.104
Google Scholar
[12]
K. P. Surendran, N. Santha, P. Mohanan,M. T. Sebastian, Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications, The European Physical Journal B - Condensed Matter and Complex Systems 41, (2004).
DOI: 10.1140/epjb/e2004-00321-8
Google Scholar
[13]
K. Surendran, M. Sebastian, M. Manjusha,J. Philip, A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications, Journal of Applied Physics 98, (2005) 44101-44101.
DOI: 10.1063/1.2007873
Google Scholar
[14]
J. -H. Park, S. Nahm,J. -G. Park, Crystal structure and microwave dielectric properties of (1―x) ZnTa2O6―xTiO2 ceramics, Journal of Alloys and Compounds 537, (2012) 221-226.
DOI: 10.1016/j.jallcom.2012.05.065
Google Scholar
[15]
C. L. Huang, J. Y. Chen,B. J. Li, Characterization and dielectric behavior of a new dielectric ceramics Ca(Mg1/3Nb2/3)O3–(Ca0. 8Sr0. 2)TiO3 at microwave frequencies, Journal of Alloys and Compounds 484, (2009) 494-497.
DOI: 10.1016/j.jallcom.2009.04.132
Google Scholar
[16]
Y. C. Chen, Microwave dielectric properties of (Mg(1-x)Cox)2Sn04 ceramics for application in dual- band inverted-E-shaped monopole antenna, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 58, (2011) 2531-2538.
DOI: 10.1109/tuffc.2011.2116
Google Scholar
[17]
X. Tian, L. Wan, K. Pan, C. Tian, H. Fu,K. Shi, Facile synthesis of mesoporous ZnAl2O4 thin films through the evaporation-induced self-assembly method, Journal of Alloys and Compounds 488, (2009) 320-324.
DOI: 10.1016/j.jallcom.2009.08.120
Google Scholar
[18]
M. Zawadzki, W. Staszak, F. E. López Suárez, M. J. Illán Gómez,A. Bueno López, Preparation, characterisation and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels, Applied Catalysis A: General 371, (2009) 92-98.
DOI: 10.1016/j.apcata.2009.09.035
Google Scholar
[19]
L. K. C. de Souza, J. R. Zamian, G. N. da Rocha Filho, L. E. B. Soledade, I. M. G. dos Santos, A. G. Souza, T. Scheller, R. S. Angélica,C. E. F. da Costa, Blue pigments based on CoxZn1−xAl2O4 spinels synthesized by the polymeric precursor method, Dyes and Pigments 81, (2009).
DOI: 10.1016/j.dyepig.2008.09.017
Google Scholar
[20]
H. Zhang, L. Fang, R. Elsebrock,R. Z. Yuan, Crystal structure and microwave dielectric properties of a new A6B5O18-type cation-deficient perovskite Ba3La3Ti4NbO18, Materials Chemistry and Physics 93, (2005) 450-454.
DOI: 10.1016/j.matchemphys.2005.03.032
Google Scholar
[21]
R. T. Kumar, N. C. S. Selvam, C. Ragupathi, L. J. Kennedy,J. J. Vijaya, Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications, Powder Technology 224, (2012) 147-154.
DOI: 10.1016/j.powtec.2012.02.044
Google Scholar
[22]
S. A. E. All, Y. H. A. Fawzy,R. M. Radwan, Study on the structure and electrical behaviour of zinc aluminate ceramics irradiated with gamma radiation, Journal of Physics D: Applied Physics 40, (2007) 5707.
DOI: 10.1088/0022-3727/40/18/029
Google Scholar
[23]
E. Jamal, D. Kumar,M. R. Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles, Bulletin of Materials Science 34, (2011) 251-259.
DOI: 10.1007/s12034-011-0071-y
Google Scholar
[24]
W. N. W. Jalal, H. Abdullah, M. S. Zulfakar, S. Shaari, M. Islam,B. Bais, Characteristics of Nanostructured CaxZn(1-x)Al2O4 Thin Films Prepared by Sol-Gel Method for GPS Patch Antennas, Sains Malaysiana 43, (2014) 833-842.
DOI: 10.1007/s10971-015-3673-9
Google Scholar
[25]
M. I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental 23, (1999) 89-114.
DOI: 10.1016/s0926-3373(99)00069-7
Google Scholar
[26]
C. G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies, Physics Review 81, (1951) 121-124.
DOI: 10.1103/physrev.83.121
Google Scholar
[27]
K. W. Wagner, Zur Theorie der unvollkommenen Dielektrika, Annalen der Physik 345, (1913) 817-855.
DOI: 10.1002/andp.19133450502
Google Scholar
[28]
W. Kingery, H. Bowen,D. Uhlmann, Introduction to Ceramics. John Willey & Sons, New York, (1976).
Google Scholar
[29]
C. A. Balanis, Antenna theory analysis and design, 3rd ed. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, (2005).
Google Scholar
[30]
H. -H. Sotoudeh, C. Joseph, O. Sooseok, J. Ju-Ung, P. Noh-Joon,P. Dae-Hee, Design of a High Performance Patch Antenna for GPS Communication Systems, Journal of Electrical Engineering & Technology 4, (2009) 282-286.
Google Scholar
[31]
J. -M. Wu, W. -Z. Lu, W. Lei,X. -C. Wang, Preparation of ZnAl2O4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting, Materials Research Bulletin 46, (2011) 1485-1489.
DOI: 10.1016/j.materresbull.2011.04.026
Google Scholar
[32]
A. A. Abdelaziz,D. M. Nashaat, Compact GPS Microstrip Patch Antenna, in Military Communications Conference, 2007. MILCOM 2007. IEEE 2007, pp.1-4.
DOI: 10.1109/milcom.2007.4454936
Google Scholar