Fabrication and Characterization of TiO2-Doped ZnAl2O4 Nanocrystals via Sol-Gel Method for GPS Antenna

Article Preview

Abstract:

The Zn(1-x)TixAl2O4 (x = 0.00, 0.05, 0.15 & 0.25) nanocrystals thin films were prepared by sol-gel method. The properties of Zn(1-x)TixAl2O4 were investigated by X-ray diffraction (XRD), Atomic Force Microscope (AFM), Fourier transform infrared spectra (FTIR) and (UV-Vis). By indexing the XRD patterns, we identified three structural types which is ZnAl2O4, anatase and rutile. The addition of TiO2 increased the crystallite size from 14.65 to 25.25 nm. The direct band gap was found to be around 3.35 to 3.84 eV. The addition of TiO2 increased the crystallite size, surface roughness, and lattice parameters of the resultant films, evidently affecting their density and dielectric constant (). The thin films were characterized in the certain frequency to determine the using LCR spectrometer. The and density value of the Zn(1-x)TixAl2O4 films increase linearly from 8.56 to 13.48 and 4.60 to 4.70 g/cm3 with the increasing of x value, respectively. Based on the material analysis and microwave antenna theory, GPS patch antennas were fabricated using the Zn(1-x)TixAl2O4 material. The fabricated GPS antenna with the highest (13.48) material exhibits the smallest size of antenna which is 7.45 cm2. The performances and the operating frequencies were measured using a PNA series network analyzer. The result showed that all patch antennas operate at frequency of 1.570 GHz. The GPS patch antenna fabricated from Zn0.25Ti0.75Al2O4 showed an excellent combination of return loss (-29.6 dB), smallest size (7.85 cm2), and wide bandwidth (195 MHz). All fabricated antennas are meets the requirements of GPS applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

331-344

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. N. Wan Jalal, H. Abdullah, M. S. Zulfakar, B. Bais, S. Shaari,M. T. Islam, ZnAl2O4-Based Microwave Dielectric Ceramics as GPS Patch Antenna: A Review, Transactions of the Indian Ceramic Society 72, (2013) 215-224.

DOI: 10.1080/0371750x.2013.868323

Google Scholar

[2] S. B. Narang,S. Bahel, Low loss dielectric ceramics for microwave applications: a review, Journal of Ceramic Processing Research 11, (2010) 316-321.

Google Scholar

[3] H. Ohsato, Research and Development of Microwave Dielectric Ceramics for Wireless Communications, Journal of the Ceramic Society of Japan 113, (2005) 703-711.

DOI: 10.2109/jcersj.113.703

Google Scholar

[4] H. Abdullah, W. Jalal,M. Zulfakar, Miniaturization of GPS patch antennas based on novel dielectric ceramics Zn(1−x)MgxAl2O4 by sol–gel method, Journal of Sol-Gel Science and Technology 69, (2014) 429-440.

DOI: 10.1007/s10971-013-3239-7

Google Scholar

[5] W. Lei, W. Z. Lu, X. H. Wang, F. Liang,J. Wang, Phase Composition and Microwave Dielectric Properties of ZnAl2O4–Co2TiO4 Low-Permittivity Ceramics with High Quality Factor, Journal of the American Ceramic Society 94, (2011) 20-23.

DOI: 10.1111/j.1551-2916.2010.04247.x

Google Scholar

[6] H. Abdullah, M. S. Zulfakar, W. N. W. Jalal, M. T. Islam,S. Shaari, Synthesis and fabrication of (1− x) ZnAl2O4–xSiO2 thin films to be applied as patch antennas, Journal of Sol-Gel Science and Technology 69, (2014) 183-192.

DOI: 10.1007/s10971-013-3202-7

Google Scholar

[7] W. Jalal, H. Abdullah, M. Zulfakar, M. Islam, B. Bais,S. Shaari, GPS patch antenna performance by modification of Zn(1−x)CaxAl2O4-based microwave dielectric ceramics, Journal of Sol-Gel Science and Technology 71, (2014) 477-489.

DOI: 10.1007/s10971-014-3397-2

Google Scholar

[8] C. L. Huang, T. J. Yang,C. C. Huang, Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a τf Compensator, Journal of the American Ceramic Society 92, (2009) 119-124.

Google Scholar

[9] W. Lei, W. Z. Lu, J. H. Zhu,X. H. Wang, Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites, Materials Letters 61, (2007) 4066-4069.

DOI: 10.1016/j.matlet.2007.01.017

Google Scholar

[10] W. Lei, W. -Z. Lu, J. -H. Zhu,X. Ye, Effects of heating rate on microstructures and microwave dielectric properties of (1-x)ZnAl2O4–xTiO2 (x = 0. 21) ceramics, Ceramics International 35, (2009) 277-280.

DOI: 10.1016/j.ceramint.2007.10.021

Google Scholar

[11] L. Wen, -. Z. L. Wen, W. Xiao-Chuan,W. Shuai, Synthesis of (1−x)ZnAl2O4–xTiO2 microwave dielectric ceramics by molten-salt process, Journal of Alloys and Compounds 508, (2010) 507–511.

DOI: 10.1016/j.jallcom.2010.08.104

Google Scholar

[12] K. P. Surendran, N. Santha, P. Mohanan,M. T. Sebastian, Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications, The European Physical Journal B - Condensed Matter and Complex Systems 41, (2004).

DOI: 10.1140/epjb/e2004-00321-8

Google Scholar

[13] K. Surendran, M. Sebastian, M. Manjusha,J. Philip, A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications, Journal of Applied Physics 98, (2005) 44101-44101.

DOI: 10.1063/1.2007873

Google Scholar

[14] J. -H. Park, S. Nahm,J. -G. Park, Crystal structure and microwave dielectric properties of (1―x) ZnTa2O6―xTiO2 ceramics, Journal of Alloys and Compounds 537, (2012) 221-226.

DOI: 10.1016/j.jallcom.2012.05.065

Google Scholar

[15] C. L. Huang, J. Y. Chen,B. J. Li, Characterization and dielectric behavior of a new dielectric ceramics Ca(Mg1/3Nb2/3)O3–(Ca0. 8Sr0. 2)TiO3 at microwave frequencies, Journal of Alloys and Compounds 484, (2009) 494-497.

DOI: 10.1016/j.jallcom.2009.04.132

Google Scholar

[16] Y. C. Chen, Microwave dielectric properties of (Mg(1-x)Cox)2Sn04 ceramics for application in dual- band inverted-E-shaped monopole antenna, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 58, (2011) 2531-2538.

DOI: 10.1109/tuffc.2011.2116

Google Scholar

[17] X. Tian, L. Wan, K. Pan, C. Tian, H. Fu,K. Shi, Facile synthesis of mesoporous ZnAl2O4 thin films through the evaporation-induced self-assembly method, Journal of Alloys and Compounds 488, (2009) 320-324.

DOI: 10.1016/j.jallcom.2009.08.120

Google Scholar

[18] M. Zawadzki, W. Staszak, F. E. López Suárez, M. J. Illán Gómez,A. Bueno López, Preparation, characterisation and catalytic performance for soot oxidation of copper-containing ZnAl2O4 spinels, Applied Catalysis A: General 371, (2009) 92-98.

DOI: 10.1016/j.apcata.2009.09.035

Google Scholar

[19] L. K. C. de Souza, J. R. Zamian, G. N. da Rocha Filho, L. E. B. Soledade, I. M. G. dos Santos, A. G. Souza, T. Scheller, R. S. Angélica,C. E. F. da Costa, Blue pigments based on CoxZn1−xAl2O4 spinels synthesized by the polymeric precursor method, Dyes and Pigments 81, (2009).

DOI: 10.1016/j.dyepig.2008.09.017

Google Scholar

[20] H. Zhang, L. Fang, R. Elsebrock,R. Z. Yuan, Crystal structure and microwave dielectric properties of a new A6B5O18-type cation-deficient perovskite Ba3La3Ti4NbO18, Materials Chemistry and Physics 93, (2005) 450-454.

DOI: 10.1016/j.matchemphys.2005.03.032

Google Scholar

[21] R. T. Kumar, N. C. S. Selvam, C. Ragupathi, L. J. Kennedy,J. J. Vijaya, Synthesis, characterization and performance of porous Sr(II)-added ZnAl2O4 nanomaterials for optical and catalytic applications, Powder Technology 224, (2012) 147-154.

DOI: 10.1016/j.powtec.2012.02.044

Google Scholar

[22] S. A. E. All, Y. H. A. Fawzy,R. M. Radwan, Study on the structure and electrical behaviour of zinc aluminate ceramics irradiated with gamma radiation, Journal of Physics D: Applied Physics 40, (2007) 5707.

DOI: 10.1088/0022-3727/40/18/029

Google Scholar

[23] E. Jamal, D. Kumar,M. R. Anantharaman, On structural, optical and dielectric properties of zinc aluminate nanoparticles, Bulletin of Materials Science 34, (2011) 251-259.

DOI: 10.1007/s12034-011-0071-y

Google Scholar

[24] W. N. W. Jalal, H. Abdullah, M. S. Zulfakar, S. Shaari, M. Islam,B. Bais, Characteristics of Nanostructured CaxZn(1-x)Al2O4 Thin Films Prepared by Sol-Gel Method for GPS Patch Antennas, Sains Malaysiana 43, (2014) 833-842.

DOI: 10.1007/s10971-015-3673-9

Google Scholar

[25] M. I. Litter, Heterogeneous photocatalysis: transition metal ions in photocatalytic systems, Applied Catalysis B: Environmental 23, (1999) 89-114.

DOI: 10.1016/s0926-3373(99)00069-7

Google Scholar

[26] C. G. Koops, On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audio frequencies, Physics Review 81, (1951) 121-124.

DOI: 10.1103/physrev.83.121

Google Scholar

[27] K. W. Wagner, Zur Theorie der unvollkommenen Dielektrika, Annalen der Physik 345, (1913) 817-855.

DOI: 10.1002/andp.19133450502

Google Scholar

[28] W. Kingery, H. Bowen,D. Uhlmann, Introduction to Ceramics. John Willey & Sons, New York, (1976).

Google Scholar

[29] C. A. Balanis, Antenna theory analysis and design, 3rd ed. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, (2005).

Google Scholar

[30] H. -H. Sotoudeh, C. Joseph, O. Sooseok, J. Ju-Ung, P. Noh-Joon,P. Dae-Hee, Design of a High Performance Patch Antenna for GPS Communication Systems, Journal of Electrical Engineering & Technology 4, (2009) 282-286.

Google Scholar

[31] J. -M. Wu, W. -Z. Lu, W. Lei,X. -C. Wang, Preparation of ZnAl2O4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting, Materials Research Bulletin 46, (2011) 1485-1489.

DOI: 10.1016/j.materresbull.2011.04.026

Google Scholar

[32] A. A. Abdelaziz,D. M. Nashaat, Compact GPS Microstrip Patch Antenna, in Military Communications Conference, 2007. MILCOM 2007. IEEE 2007, pp.1-4.

DOI: 10.1109/milcom.2007.4454936

Google Scholar