Effect of KOH Treated Graphene in Green Monoliths of Pre-Carbonized Biomass Fibers on the Structure, Porosity and Capacitance of Supercapacitors Carbon Electrodes

Article Preview

Abstract:

Activated carbon monoliths (ACMs) electrodes for supercapacitor application were prepared from the green monoliths (GMs) containing KOH treated self-adhesive carbon grains (SACG) added with KOH treated graphene at its weight percentages of 0, 2, 4, 6, 8 and 10 %, respectively. The SACG were prepared from fibers of oil palm empty fruit bunches by a low carbonization temperature method. The ACMs were produced by the carbonization and activation of the GMs. The surface area, structure and specific capacitance of the ACMs electrodes were found affected by the graphene addition. The highest surface area of the ACMs electrode was observed for the addition of 6% graphene, which corresponds to the carbon turbostratic structure of the ACMs electrodes with the values of its crystallites interlayers spacing (d002 and d100) at 0.352 nm and 0.205 nm, and its crystallites stack-width (La) and stack-height (Lc) at 43.21 nm and 10.06 nm, respectively. The specific capacitance of the cell using this electrode was 112 F / g.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] F. Lufrano, P. Staiti, Mesoporous carbon materials as electrodes for electrochemical supercapacitors, Int. J. Electrochem. Sci. 5 (2010) 903–916.

DOI: 10.1016/s1452-3981(23)15331-4

Google Scholar

[2] R. Farma, M. Deraman, Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J. G. Manjunatha, M.M. Ishak, B.N. Dollah and S.A. Hashmi, Preparation of a highly porous binderless activated carbon electrode from fibers of oil palm empty fruit bunches for application in supercapacitors, Bioresource. Technol. 132 (2013).

DOI: 10.1016/j.biortech.2013.01.044

Google Scholar

[3] Awitdrus, M. Deraman, I.A. Talib, R. Omar, M.H. Jumali, E. Taer, M.H. Saman, Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes, Sains Malays 39 (2010).

DOI: 10.1063/1.4757187

Google Scholar

[4] M. Deraman, R. Daik, S. Soltaninejad, N.S.M. Nor, Awitdrus, R. Farma, N.F. Mamat, N.H. Basri, M.A.R. Othman, A new empirical equation for estimating specific surface area of supercapacitor carbon electrode from X-ray diffraction, Adv. Mat. Res. 1108 (2015).

DOI: 10.4028/www.scientific.net/amr.1108.1

Google Scholar

[5] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006)11-27.

DOI: 10.1016/j.jpowsour.2006.02.065

Google Scholar

[6] Y. Li, M.V. Zijil, S. Chiang, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, J. Power Sources 196 (2011) 6003-6006.

DOI: 10.1016/j.jpowsour.2011.02.092

Google Scholar

[7] R. Ramachandran, V. Mani, S.M. Chen, R. Saraswathi, B.S. Lou, Recent trends in graphene based electrode materials for energy storage devices and sensors applications, Int. J. Electrochem, Sci. 8 (2013) 11680-11694.

DOI: 10.1016/s1452-3981(23)13214-7

Google Scholar

[8] C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, J. Power Sources 258 (2014) 290-296.

DOI: 10.1016/j.jpowsour.2014.01.056

Google Scholar

[9] N.S.M. Nor, M. Deraman, N.H. Basri, B.N.M. Dollah, R. Omar, S. Soltaninejad, R. Daik and M.D. Norizam, Supercapacitor activated carbon electrode from composite of green monoliths of KOH-treated pre-carbonized oil palm empty fruit bunches and HNO3-treated graphite, Adv. Mat. Res. 1112 (2015).

DOI: 10.4028/www.scientific.net/amr.1112.303

Google Scholar

[10] M. Deraman, N.S.M. Nor, N.H. Basri, B.N.M. Dollah, S. Soltaninejad, R. Daik, R. Omar, M.A. Hashim and M.A.R. Othman, Graphene and activated carbon based supercapacitor electrodes, Adv. Mat. Res. 1112 (2015) 231-235.

DOI: 10.4028/www.scientific.net/amr.1112.231

Google Scholar

[11] M. Deraman, R. Omar and A.G. Harun, Young Modulus of carbon from self-adhesive carbon grain of oil palm bunches, J. Mater. Sci. Lett. 17 (1998) 2059-(2060).

Google Scholar

[12] M. Deraman, R. Omar, S. Zakaria, I.R. Mustapa, M. Talib, N. Alias, Electrical and mechanical properties of carbon pellets from acid (HNO3) treated self-adhesive carbon grain from oil palm empty bunch, J. Mater. Sci. 7 (2002) 3329-3335.

DOI: 10.1002/adv.10069

Google Scholar

[13] M. Deraman, S. Zakaria, R. Omar, A.A. Astimar, Electrical conductivity of carbon pellets from mixtures of pyropolymer from oil palm bunch and cotton cellulose, Jpn. J. Appl. Phys. 39 (2000) L1236-L1238.

DOI: 10.1143/jjap.39.l1236

Google Scholar

[14] M. Deraman, M.P. Ismail, M.M.D. Ismail, Young's modulus of carbon from a mixture of oil palm bunches and latex, J. Mater. Sci. Lett. 14 (1995) 781-782.

DOI: 10.1007/bf00278126

Google Scholar

[15] R. Farma, M. Deraman, R. Omar, M.M. Ishak, Awitdrus, E. Taer, I.A. Talib, Binderless composite electrode monolith from carbon nanotube and biomass carbon activated by KOH and CO2 gas for supercapacitor, AIP Conf. Proc. 1415 (2011) 180-184.

DOI: 10.1063/1.3667251

Google Scholar

[16] E. Taer, M. Deraman, I.A. Talib, A.A. Umar, M. Oyama, R.M. Yunus, Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation, Curr. Appl. Phys. 10 (2010).

DOI: 10.1016/j.cap.2009.12.044

Google Scholar

[17] N.S.M. Nor, M. Deraman, R. Omar, R. Farma, N.H. Basri, B.N.M. Dolah, N.F. Mamat, B. Yatim, M.N.M. Daud, Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches, Energy 79 (2015).

DOI: 10.1016/j.energy.2014.11.002

Google Scholar

[18] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985).

DOI: 10.1515/iupac.57.0013

Google Scholar

[19] A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marín, C. Moreno-Castilla. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol. 111 (2012) 185-90.

DOI: 10.1016/j.biortech.2012.02.010

Google Scholar

[20] N.H. Basri, M. Deraman, S. Kanwal, I.A. Talib, J.G. Manjunatha, A.A. Aziz and R. Farma, Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues, Biomass Bioenergy 59 (2013) 370-379.

DOI: 10.1016/j.biombioe.2013.08.035

Google Scholar

[21] M. Deraman, S. Zakaria, J.A. Murshidi, Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty bunches by X-ray diffraction, Jpn. J. Appl. Phys. 40 (2001) 3311-3114.

DOI: 10.1143/jjap.40.3311

Google Scholar

[22] D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources 74 (1998) 99-107.

DOI: 10.1016/s0378-7753(98)00038-x

Google Scholar

[23] B.N.M. Dolah, M. Deraman, M.A.R. Othman, R. Farma, E. Taer, Awitdrus, N.H. Basri, I.A. Talib, R. Omar, N.S.M. Nor, A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes, Mater. Res. Bull. 60 (2014).

DOI: 10.1016/j.materresbull.2014.08.013

Google Scholar