[1]
F. Lufrano, P. Staiti, Mesoporous carbon materials as electrodes for electrochemical supercapacitors, Int. J. Electrochem. Sci. 5 (2010) 903–916.
DOI: 10.1016/s1452-3981(23)15331-4
Google Scholar
[2]
R. Farma, M. Deraman, Awitdrus, I.A. Talib, E. Taer, N.H. Basri, J. G. Manjunatha, M.M. Ishak, B.N. Dollah and S.A. Hashmi, Preparation of a highly porous binderless activated carbon electrode from fibers of oil palm empty fruit bunches for application in supercapacitors, Bioresource. Technol. 132 (2013).
DOI: 10.1016/j.biortech.2013.01.044
Google Scholar
[3]
Awitdrus, M. Deraman, I.A. Talib, R. Omar, M.H. Jumali, E. Taer, M.H. Saman, Microcrystallite dimension and total active surface area of carbon electrode from mixtures of pre-carbonized oil palm empty fruit bunches and green petroleum cokes, Sains Malays 39 (2010).
DOI: 10.1063/1.4757187
Google Scholar
[4]
M. Deraman, R. Daik, S. Soltaninejad, N.S.M. Nor, Awitdrus, R. Farma, N.F. Mamat, N.H. Basri, M.A.R. Othman, A new empirical equation for estimating specific surface area of supercapacitor carbon electrode from X-ray diffraction, Adv. Mat. Res. 1108 (2015).
DOI: 10.4028/www.scientific.net/amr.1108.1
Google Scholar
[5]
A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006)11-27.
DOI: 10.1016/j.jpowsour.2006.02.065
Google Scholar
[6]
Y. Li, M.V. Zijil, S. Chiang, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, J. Power Sources 196 (2011) 6003-6006.
DOI: 10.1016/j.jpowsour.2011.02.092
Google Scholar
[7]
R. Ramachandran, V. Mani, S.M. Chen, R. Saraswathi, B.S. Lou, Recent trends in graphene based electrode materials for energy storage devices and sensors applications, Int. J. Electrochem, Sci. 8 (2013) 11680-11694.
DOI: 10.1016/s1452-3981(23)13214-7
Google Scholar
[8]
C. Zheng, X. Zhou, H. Cao, G. Wang, Z. Liu, Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material, J. Power Sources 258 (2014) 290-296.
DOI: 10.1016/j.jpowsour.2014.01.056
Google Scholar
[9]
N.S.M. Nor, M. Deraman, N.H. Basri, B.N.M. Dollah, R. Omar, S. Soltaninejad, R. Daik and M.D. Norizam, Supercapacitor activated carbon electrode from composite of green monoliths of KOH-treated pre-carbonized oil palm empty fruit bunches and HNO3-treated graphite, Adv. Mat. Res. 1112 (2015).
DOI: 10.4028/www.scientific.net/amr.1112.303
Google Scholar
[10]
M. Deraman, N.S.M. Nor, N.H. Basri, B.N.M. Dollah, S. Soltaninejad, R. Daik, R. Omar, M.A. Hashim and M.A.R. Othman, Graphene and activated carbon based supercapacitor electrodes, Adv. Mat. Res. 1112 (2015) 231-235.
DOI: 10.4028/www.scientific.net/amr.1112.231
Google Scholar
[11]
M. Deraman, R. Omar and A.G. Harun, Young Modulus of carbon from self-adhesive carbon grain of oil palm bunches, J. Mater. Sci. Lett. 17 (1998) 2059-(2060).
Google Scholar
[12]
M. Deraman, R. Omar, S. Zakaria, I.R. Mustapa, M. Talib, N. Alias, Electrical and mechanical properties of carbon pellets from acid (HNO3) treated self-adhesive carbon grain from oil palm empty bunch, J. Mater. Sci. 7 (2002) 3329-3335.
DOI: 10.1002/adv.10069
Google Scholar
[13]
M. Deraman, S. Zakaria, R. Omar, A.A. Astimar, Electrical conductivity of carbon pellets from mixtures of pyropolymer from oil palm bunch and cotton cellulose, Jpn. J. Appl. Phys. 39 (2000) L1236-L1238.
DOI: 10.1143/jjap.39.l1236
Google Scholar
[14]
M. Deraman, M.P. Ismail, M.M.D. Ismail, Young's modulus of carbon from a mixture of oil palm bunches and latex, J. Mater. Sci. Lett. 14 (1995) 781-782.
DOI: 10.1007/bf00278126
Google Scholar
[15]
R. Farma, M. Deraman, R. Omar, M.M. Ishak, Awitdrus, E. Taer, I.A. Talib, Binderless composite electrode monolith from carbon nanotube and biomass carbon activated by KOH and CO2 gas for supercapacitor, AIP Conf. Proc. 1415 (2011) 180-184.
DOI: 10.1063/1.3667251
Google Scholar
[16]
E. Taer, M. Deraman, I.A. Talib, A.A. Umar, M. Oyama, R.M. Yunus, Physical, electrochemical and supercapacitive properties of activated carbon pellets from pre-carbonized rubber wood sawdust by CO2 activation, Curr. Appl. Phys. 10 (2010).
DOI: 10.1016/j.cap.2009.12.044
Google Scholar
[17]
N.S.M. Nor, M. Deraman, R. Omar, R. Farma, N.H. Basri, B.N.M. Dolah, N.F. Mamat, B. Yatim, M.N.M. Daud, Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches, Energy 79 (2015).
DOI: 10.1016/j.energy.2014.11.002
Google Scholar
[18]
K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem. 57 (1985).
DOI: 10.1515/iupac.57.0013
Google Scholar
[19]
A. Elmouwahidi, Z. Zapata-Benabithe, F. Carrasco-Marín, C. Moreno-Castilla. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol. 111 (2012) 185-90.
DOI: 10.1016/j.biortech.2012.02.010
Google Scholar
[20]
N.H. Basri, M. Deraman, S. Kanwal, I.A. Talib, J.G. Manjunatha, A.A. Aziz and R. Farma, Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues, Biomass Bioenergy 59 (2013) 370-379.
DOI: 10.1016/j.biombioe.2013.08.035
Google Scholar
[21]
M. Deraman, S. Zakaria, J.A. Murshidi, Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty bunches by X-ray diffraction, Jpn. J. Appl. Phys. 40 (2001) 3311-3114.
DOI: 10.1143/jjap.40.3311
Google Scholar
[22]
D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors, J. Power Sources 74 (1998) 99-107.
DOI: 10.1016/s0378-7753(98)00038-x
Google Scholar
[23]
B.N.M. Dolah, M. Deraman, M.A.R. Othman, R. Farma, E. Taer, Awitdrus, N.H. Basri, I.A. Talib, R. Omar, N.S.M. Nor, A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes, Mater. Res. Bull. 60 (2014).
DOI: 10.1016/j.materresbull.2014.08.013
Google Scholar