Synthesis and Shape Memory Property of a MDI Based Liquid Crystalline Polyurethane

Article Preview

Abstract:

Liquid crystalline polyurethanes (LCPU) were prepared from 4,4’-methylenediphenyl diisocyanate (MDI), 1,6-hexanediol (HDO), 2,2-dimethylol propionic acid (DMPA) and polytetramethylene ether glycol (PTMG). The experiments synthesized three liquid crystalline polyurethane films with different soft/hard segment ratio. Chemical and structural characterization of the polyurethanes were investigated by Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, differential scanning calorimeter and polarized microscopy respectively. Swelling rate and shape memory property were tested. The results indicated that the polyurethane with 62% soft segment and large group of carboxyl displayed excellent swelling and shape memory properties, and the shape recovery rate reached 100%. It was found that the crystallinity, thermal stability decreased and the temperature flexibility, water absorption and shape recovery rate increased with the increase of polytetramethylene ether glycol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-139

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. -K. Lin, J. -F. Kuo, C. -Y. Chen, Synthesis and mesomorphism of thermotropic liquid crystalline polyurethanes based on meta-diisocyanates with 4, 4'-bis(ω-hydroxyalkoxy) biphenyls, European Polymer Journal, 36 (2000) 1183-1193.

DOI: 10.1016/s0014-3057(99)00164-0

Google Scholar

[2] M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: Past, present and future developments, Progress in Polymer Science.

DOI: 10.1016/j.progpolymsci.2015.04.002

Google Scholar

[3] L. Peponi, I. Navarro-Baena, A. Sonseca, E. Gimenez, A. Marcos-Fernandez, J.M. Kenny, Synthesis and characterization of PCL-PLLA polyurethane with shape memory behavior, European Polymer Journal, 49 (2013) 893-903.

DOI: 10.1016/j.eurpolymj.2012.11.001

Google Scholar

[4] J.T. Kim, B.K. Kim, E.Y. Kim, H.C. Park, H.M. Jeong, Synthesis and shape memory performance of polyurethane/graphene nanocomposites, Reactive and Functional Polymers, 74 (2014) 16-21.

DOI: 10.1016/j.reactfunctpolym.2013.10.004

Google Scholar

[5] H.M. Jeong, B.K. Kim, Y.J. Choi, Synthesis and cationic photopolymerization of biorenewable monomers and oligomers, Polymer, 41 (2000) 1849-1855.

Google Scholar

[6] S.N. Jaisankar, D.J. Nelson, C.N. Brammer, New synthesis and characterization of ionic polyurethane-urea liquid crystals, Polymer, 50 (2009) 4775-4780.

DOI: 10.1016/j.polymer.2009.07.049

Google Scholar

[7] Tanaka M, Nakaya T. Kobunshi Ronbunshu 1986; 43: 311.

Google Scholar

[8] Changhai H, Chaocan Z, Minli X, Shuangqing Z. Synthesis and thermal properties of side-chain liquid crystalline poly[1-({(4-methoxyazobenzene-4'-oxy)alkyl}thio)- 2. 3-epoxypropane]s, Liq Cryst 2008; 35: 1321-8.

DOI: 10.1080/02678290802578447

Google Scholar

[9] M.M. Rahman, H.D. Kim, W.K. Lee, Properties of waterborne polyurethane adhesives: effect of chain extender and polyol content, J. Adhes. Sci. Technol. 23 (2009) 177-193.

DOI: 10.1163/156856108x344667

Google Scholar

[10] N. Liu, Y. Zhao, M. Kang, J. Wang, X. Wang, Y. Feng, N. Yin, Q. Li, The effects of the molecular weight and structure of polycarbonatediols on the properties of waterborne polyurethanes, Progress in Organic Coatings, 82 (2015) 46-56.

DOI: 10.1016/j.porgcoat.2015.01.015

Google Scholar

[11] P. Król, Barbara Pilch-Pitera, Phase structure and thermal stability of crossslinked polyurethane elstomers based on well-defined prepolymers, J. Appl. Polym. Sci. 104(3)(May 2007) 1464-1474.

DOI: 10.1002/app.25011

Google Scholar

[12] S.M. Cakic, J.V. Stamenkovic, D.M. Djordjevic, I.S. Ristic, Synthesis and degradation profile of cast films of PPG-DMPA-IPDI aqueous polyurethane dispersions based on selective catalysts, Polym. Degrad. Stab. 94 (2009) 2015-(2022).

DOI: 10.1016/j.polymdegradstab.2009.07.015

Google Scholar

[13] G. Trovati, E.A. Sanches, Neto, S.C., Y.P. Mascarenhas, G.O. Chierice, Characterization of Polyurethane Resins by FTIR, TGA, and XRD, 2009. 1-6.

DOI: 10.1002/app.31096

Google Scholar

[14] S. Mondal, D. Martin, Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications, Polym. Degrad. Stab. 97(8) (Aug. 2012) 1553-1561.

DOI: 10.1016/j.polymdegradstab.2012.04.008

Google Scholar

[15] D.K. Lee, H.B. Tsai, H.H. Wang, R.S. Tsai, Aqueous polyurethane dispersions derived from polycarbonatediols, J. Appl. Polym. Sci. 94 (2004) 1723-1729.

DOI: 10.1002/app.21090

Google Scholar

[16] M. M Rahman, J.H. Kim, H.D. Kim, Characterization of waterbrone polyurethane/clay nanocomposite adhesives containing different amounts of ionic groups, J. Adhes. Sci. Technol. 21 (2007) 1575-1588.

DOI: 10.1163/156856107782793195

Google Scholar

[17] Ahn TO, Choi IS, Jeong HM, Cho K. Thermal and mechanical properties of thermoplastic polyurethane elastomers from different polymerization methods, Polym Int 1993; 31: 329.

DOI: 10.1002/pi.4990310404

Google Scholar

[18] L. Fang, G. Han, J. Zhang, H. Zhang, H. Zhang, European Polymer Journal.

Google Scholar

[19] C. Fang, X. Zhou, Q. Yu, S. Liu, D. Guo, R. Yu, J. Hu, Progress in Organic Coatings, 77 (2014) 61-71.

Google Scholar

[20] M. Raja, S.H. Ryu, A.M. Shanmugharaj, Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites, European Polymer Journal, 49 (2013) 3492-3500.

DOI: 10.1016/j.eurpolymj.2013.08.009

Google Scholar