Effects of Ionic Group on the Shape Memory Performance of Polyurethane

Article Preview

Abstract:

Ionic polyurethane (IPU) was synthesized as shape memory materials. Poly (tetramethylene ether) glycol with 2000g/mol number average molecular weight were used as soft segment, 4,4-methylenebis (phenyl isocyanate), and 1,2-dihydroxy-3-propanesulfonic acid salt were used to compose the segment of SMP materials. The structure and properties of these IPU films were characterized by Fourier Transform infrared, X-ray diffraction, Thermal gravimetric analysis and Differential scanning calorimeter. The results showed that the glass transition temperature of the IPU increased with the increase of hard segment content. The physical properties in terms of swelling property, water absorption and ion-exchange capacity increased with the improving of sulfonic group content in IPU. The shape memory property of IPU exhibited that the shape fixity ratio and recovery rate improved remarkably with the increase of hard segment content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

140-147

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Ohm, M. Brehmer, R. Zentel, Liquid Crystalline Elastomers as Actuators and Sensors, Adv. Mater. (Weinheim, Ger. ). 22 (2010) 3366-3387.

DOI: 10.1002/adma.200904059

Google Scholar

[2] J.N. Rodriguez, F.J. Clubb, T.S. Wilson, M.W. Miller, T.W. Fossum, J. Hartman, E. Tuzun, P. Singhal, D.J. Maitland, In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model, J. Biomed. Mater. Res., Part A. 102A (2014).

DOI: 10.1002/jbm.a.34782

Google Scholar

[3] E. Lee, M. Zhang, Y. Cho, Y. Cui, J. Van der Spiegel, N. Engheta, S. Yang, Tilted Pillars on Wrinkled Elastomers as a Reversibly Tunable Optical Window, Adv. Mater. (Weinheim, Ger. ). 26 (2014) 4127-4133.

DOI: 10.1002/adma.201400711

Google Scholar

[4] J.D. Eisenhaure, T. Xie, S. Varghese, S. Kim, Microstructured Shape Memory Polymer Surfaces with Reversible Dry Adhesion, ACS Appl. Mater. Interfaces. 5 (2013) 7714-7717.

DOI: 10.1021/am402479f

Google Scholar

[5] M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: Past, present and future developments, Prog. Polym. Sci. Doi: http: /dx. doi. org/10. 1016/j. progpolymsci. 2015. 04. 002.

DOI: 10.1016/j.progpolymsci.2015.04.002

Google Scholar

[6] A. Lendlein, H. Jiang, O. Juenger, R. Langer, Light-induced shape-memory polymers, Nature (London, U. K. ). 434 (2005) 879-882.

DOI: 10.1038/nature03496

Google Scholar

[7] J.T. Kim, H.J. Jeong, H.C. Park, H.M. Jeong, S.Y. Bae, B.K. Kim, Electroactive shape memory performance of polyurethane/graphene nanocomposites, React. Funct. Polym. 88 (2015) 1-7.

DOI: 10.1016/j.reactfunctpolym.2015.01.004

Google Scholar

[8] G. Vialle, M. di Prima, E. Hocking, K. Gall, H. Garmestani, T. Sanderson, S.C. Arzberger, Remote activation of nanomagnetite reinforced shape memory polymer foam, Smart Mater. Struct. 18 (2009) 115014/115011-115014/115010.

DOI: 10.1088/0964-1726/18/11/115014

Google Scholar

[9] H. Lu, J. Leng, Y. Liu, S. Du, Shape-memory polymer in response to solution, Adv. Eng. Mater. 10 (2008) 592-595.

DOI: 10.1002/adem.200800002

Google Scholar

[10] A. Lendlein, S. Kelch, Shape-memory polymers, Angew. Chem., Int. Ed. 41 (2002) 2034-(2057).

DOI: 10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m

Google Scholar

[11] M. Raja, S.H. Ryu, A.M. Shanmugharaj, Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites, Eur. Polym. J. 49 (2013) 3492-3500.

DOI: 10.1016/j.eurpolymj.2013.08.009

Google Scholar

[12] J. Zhang, G. Wu, C. Huang, Y. Niu, C. Chen, Z. Chen, K. Yang, Y. Wang, Unique Multifunctional Thermally-Induced Shape Memory Poly(p-dioxanone)-Poly(tetramethylene oxide)glycol Multiblock Copolymers Based on the Synergistic Effect of Two Segments, J. Phys. Chem. C. 116 (2012).

DOI: 10.1021/jp211953q

Google Scholar

[13] M.K. Jang, A. Hartwig, B.K. Kim, Shape memory polyurethanes cross-linked by surface modified silica particles, J. Mater. Chem. 19 (2009) 1166-1172.

DOI: 10.1039/b816691a

Google Scholar

[14] C. Liang, C.A. Rogers, E. Malafeew, Investigation of shape memory polymers and their hybrid composites, J. Intell. Mater. Syst. Struct. 8 (1997) 380-386.

Google Scholar

[15] T. Ohki, Q. -Q. Ni, N. Ohsako, M. Iwamoto, Mechanical and shape memory behavior of composites with shape memory polymer, Composites, Part A. 35A (2004) 1065-1073.

DOI: 10.1016/j.compositesa.2004.03.001

Google Scholar

[16] F. Cao, S.C. Jana, Nanoclay-tethered shape memory polyurethane nanocomposites, Polymer. 48 (2007) 3790-3800.

DOI: 10.1016/j.polymer.2007.04.027

Google Scholar

[17] D.H. Jung, H.M. Jeong, B.K. Kim, Organic-inorganic chemical hybrids having shape memory effect, J. Mater. Chem. 20 (2010) 3458-3466.

DOI: 10.1039/b922775j

Google Scholar

[18] J.T. Kim, B.K. Kim, E.Y. Kim, H.C. Park, H.M. Jeong, Synthesis and shape memory performance of polyurethane/graphene nanocomposites, React. Funct. Polym. 74 (2014) 16-21.

DOI: 10.1016/j.reactfunctpolym.2013.10.004

Google Scholar

[19] C.Y. Bae, J.H. Park, E.Y. Kim, Y.S. Kang, B.K. Kim, Organic-inorganic nanocomposite bilayers with triple shape memory effect, J. Mater. Chem. 21 (2011) 11288-11295.

DOI: 10.1039/c1jm10722d

Google Scholar

[20] J. Dong, R.A. Weiss, Shape Memory Behavior of Zinc Oleate-Filled Elastomeric Ionomers, Macromolecules (Washington, DC, U. S. ). 44 (2011) 8871-8879.

DOI: 10.1021/ma201928y

Google Scholar

[21] Y. Shi, R.A. Weiss, High temperature shape memory polymers, in, American Chemical Society. 2014, pp. PMSE-203.

Google Scholar

[22] R. Dolog, R.A. Weiss, Shape Memory Behavior of a Polyethylene-Based Carboxylate Ionomer, Macromolecules (Washington, DC, U. S. ). 46 (2013) 7845-7852.

DOI: 10.1021/ma401631j

Google Scholar

[23] B.K. Kim, S.Y. Lee, J.S. Lee, S.H. Baek, Y.J. Choi, J.O. Lee, M. Xu, Polyurethane ionomers having shape memory effects, Polymer. 39 (1998) 2803-2808.

DOI: 10.1016/s0032-3861(97)00616-2

Google Scholar

[24] S. -I. Han, B.H. Gu, K.H. Nam, S.J. Im, S.C. Kim, S.S. Im, Novel copolyester-based ionomer for a shape-memory biodegradable material, Polymer. 48 (2007) 1830-1834.

DOI: 10.1016/j.polymer.2007.02.040

Google Scholar

[25] F. Rafiemanzelat, A. Fathollahi Zonouz, G. Emtiazi, Synthesis and characterization of poly(ether-urethane)s derived from 3, 6-diisobutyl-2, 5-diketopiperazine and PTMG and study of their degradability in environment, Polym. Degrad. Stab. 97 (2012).

DOI: 10.1016/j.polymdegradstab.2011.10.009

Google Scholar

[26] F. -x. Zhang, X. -l. Wei, C. Zhang, Study on preparation of waterborne polyurethane with sulfonic type hydrophilic monomer as chain extender, Zhongguo Jiaonianji. 17 (2008) 9-12.

Google Scholar

[27] M.A. Pérez-Limiñana, F. Arán-Aís, A.M. Torró-Palau, A. César Orgilés-Barceló, J. Miguel Martín-Martínez, Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups, Int. J. Adhes. Adhes. 25 (2005) 507-517.

DOI: 10.1016/j.ijadhadh.2005.02.002

Google Scholar

[28] Y. Tang, Z. Xue, X. Zhou, X. Xie, C. -Y. Tang, Novel sulfonated polysulfone ion exchange membranes for ionic polymer–metal composite actuators, Sens. Actuators, B ,. 202 (2014) 1164-1174.

DOI: 10.1016/j.snb.2014.06.071

Google Scholar

[29] F. Rafiemanzelat, A.F. Zonouz, G. Emtiazi, Synthesis and characterization of poly(ether-urethane)s derived from 3, 6-diisobutyl-2, 5-diketopiperazine and PTMG and study of their degradability in environment, Polym. Degrad. Stab. 97 (2012) 72-80.

DOI: 10.1016/j.polymdegradstab.2011.10.009

Google Scholar