[1]
C. Ohm, M. Brehmer, R. Zentel, Liquid Crystalline Elastomers as Actuators and Sensors, Adv. Mater. (Weinheim, Ger. ). 22 (2010) 3366-3387.
DOI: 10.1002/adma.200904059
Google Scholar
[2]
J.N. Rodriguez, F.J. Clubb, T.S. Wilson, M.W. Miller, T.W. Fossum, J. Hartman, E. Tuzun, P. Singhal, D.J. Maitland, In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model, J. Biomed. Mater. Res., Part A. 102A (2014).
DOI: 10.1002/jbm.a.34782
Google Scholar
[3]
E. Lee, M. Zhang, Y. Cho, Y. Cui, J. Van der Spiegel, N. Engheta, S. Yang, Tilted Pillars on Wrinkled Elastomers as a Reversibly Tunable Optical Window, Adv. Mater. (Weinheim, Ger. ). 26 (2014) 4127-4133.
DOI: 10.1002/adma.201400711
Google Scholar
[4]
J.D. Eisenhaure, T. Xie, S. Varghese, S. Kim, Microstructured Shape Memory Polymer Surfaces with Reversible Dry Adhesion, ACS Appl. Mater. Interfaces. 5 (2013) 7714-7717.
DOI: 10.1021/am402479f
Google Scholar
[5]
M.D. Hager, S. Bode, C. Weber, U.S. Schubert, Shape memory polymers: Past, present and future developments, Prog. Polym. Sci. Doi: http: /dx. doi. org/10. 1016/j. progpolymsci. 2015. 04. 002.
DOI: 10.1016/j.progpolymsci.2015.04.002
Google Scholar
[6]
A. Lendlein, H. Jiang, O. Juenger, R. Langer, Light-induced shape-memory polymers, Nature (London, U. K. ). 434 (2005) 879-882.
DOI: 10.1038/nature03496
Google Scholar
[7]
J.T. Kim, H.J. Jeong, H.C. Park, H.M. Jeong, S.Y. Bae, B.K. Kim, Electroactive shape memory performance of polyurethane/graphene nanocomposites, React. Funct. Polym. 88 (2015) 1-7.
DOI: 10.1016/j.reactfunctpolym.2015.01.004
Google Scholar
[8]
G. Vialle, M. di Prima, E. Hocking, K. Gall, H. Garmestani, T. Sanderson, S.C. Arzberger, Remote activation of nanomagnetite reinforced shape memory polymer foam, Smart Mater. Struct. 18 (2009) 115014/115011-115014/115010.
DOI: 10.1088/0964-1726/18/11/115014
Google Scholar
[9]
H. Lu, J. Leng, Y. Liu, S. Du, Shape-memory polymer in response to solution, Adv. Eng. Mater. 10 (2008) 592-595.
DOI: 10.1002/adem.200800002
Google Scholar
[10]
A. Lendlein, S. Kelch, Shape-memory polymers, Angew. Chem., Int. Ed. 41 (2002) 2034-(2057).
DOI: 10.1002/1521-3773(20020617)41:12<2034::aid-anie2034>3.0.co;2-m
Google Scholar
[11]
M. Raja, S.H. Ryu, A.M. Shanmugharaj, Thermal, mechanical and electroactive shape memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites, Eur. Polym. J. 49 (2013) 3492-3500.
DOI: 10.1016/j.eurpolymj.2013.08.009
Google Scholar
[12]
J. Zhang, G. Wu, C. Huang, Y. Niu, C. Chen, Z. Chen, K. Yang, Y. Wang, Unique Multifunctional Thermally-Induced Shape Memory Poly(p-dioxanone)-Poly(tetramethylene oxide)glycol Multiblock Copolymers Based on the Synergistic Effect of Two Segments, J. Phys. Chem. C. 116 (2012).
DOI: 10.1021/jp211953q
Google Scholar
[13]
M.K. Jang, A. Hartwig, B.K. Kim, Shape memory polyurethanes cross-linked by surface modified silica particles, J. Mater. Chem. 19 (2009) 1166-1172.
DOI: 10.1039/b816691a
Google Scholar
[14]
C. Liang, C.A. Rogers, E. Malafeew, Investigation of shape memory polymers and their hybrid composites, J. Intell. Mater. Syst. Struct. 8 (1997) 380-386.
Google Scholar
[15]
T. Ohki, Q. -Q. Ni, N. Ohsako, M. Iwamoto, Mechanical and shape memory behavior of composites with shape memory polymer, Composites, Part A. 35A (2004) 1065-1073.
DOI: 10.1016/j.compositesa.2004.03.001
Google Scholar
[16]
F. Cao, S.C. Jana, Nanoclay-tethered shape memory polyurethane nanocomposites, Polymer. 48 (2007) 3790-3800.
DOI: 10.1016/j.polymer.2007.04.027
Google Scholar
[17]
D.H. Jung, H.M. Jeong, B.K. Kim, Organic-inorganic chemical hybrids having shape memory effect, J. Mater. Chem. 20 (2010) 3458-3466.
DOI: 10.1039/b922775j
Google Scholar
[18]
J.T. Kim, B.K. Kim, E.Y. Kim, H.C. Park, H.M. Jeong, Synthesis and shape memory performance of polyurethane/graphene nanocomposites, React. Funct. Polym. 74 (2014) 16-21.
DOI: 10.1016/j.reactfunctpolym.2013.10.004
Google Scholar
[19]
C.Y. Bae, J.H. Park, E.Y. Kim, Y.S. Kang, B.K. Kim, Organic-inorganic nanocomposite bilayers with triple shape memory effect, J. Mater. Chem. 21 (2011) 11288-11295.
DOI: 10.1039/c1jm10722d
Google Scholar
[20]
J. Dong, R.A. Weiss, Shape Memory Behavior of Zinc Oleate-Filled Elastomeric Ionomers, Macromolecules (Washington, DC, U. S. ). 44 (2011) 8871-8879.
DOI: 10.1021/ma201928y
Google Scholar
[21]
Y. Shi, R.A. Weiss, High temperature shape memory polymers, in, American Chemical Society. 2014, pp. PMSE-203.
Google Scholar
[22]
R. Dolog, R.A. Weiss, Shape Memory Behavior of a Polyethylene-Based Carboxylate Ionomer, Macromolecules (Washington, DC, U. S. ). 46 (2013) 7845-7852.
DOI: 10.1021/ma401631j
Google Scholar
[23]
B.K. Kim, S.Y. Lee, J.S. Lee, S.H. Baek, Y.J. Choi, J.O. Lee, M. Xu, Polyurethane ionomers having shape memory effects, Polymer. 39 (1998) 2803-2808.
DOI: 10.1016/s0032-3861(97)00616-2
Google Scholar
[24]
S. -I. Han, B.H. Gu, K.H. Nam, S.J. Im, S.C. Kim, S.S. Im, Novel copolyester-based ionomer for a shape-memory biodegradable material, Polymer. 48 (2007) 1830-1834.
DOI: 10.1016/j.polymer.2007.02.040
Google Scholar
[25]
F. Rafiemanzelat, A. Fathollahi Zonouz, G. Emtiazi, Synthesis and characterization of poly(ether-urethane)s derived from 3, 6-diisobutyl-2, 5-diketopiperazine and PTMG and study of their degradability in environment, Polym. Degrad. Stab. 97 (2012).
DOI: 10.1016/j.polymdegradstab.2011.10.009
Google Scholar
[26]
F. -x. Zhang, X. -l. Wei, C. Zhang, Study on preparation of waterborne polyurethane with sulfonic type hydrophilic monomer as chain extender, Zhongguo Jiaonianji. 17 (2008) 9-12.
Google Scholar
[27]
M.A. Pérez-Limiñana, F. Arán-Aís, A.M. Torró-Palau, A. César Orgilés-Barceló, J. Miguel Martín-Martínez, Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups, Int. J. Adhes. Adhes. 25 (2005) 507-517.
DOI: 10.1016/j.ijadhadh.2005.02.002
Google Scholar
[28]
Y. Tang, Z. Xue, X. Zhou, X. Xie, C. -Y. Tang, Novel sulfonated polysulfone ion exchange membranes for ionic polymer–metal composite actuators, Sens. Actuators, B ,. 202 (2014) 1164-1174.
DOI: 10.1016/j.snb.2014.06.071
Google Scholar
[29]
F. Rafiemanzelat, A.F. Zonouz, G. Emtiazi, Synthesis and characterization of poly(ether-urethane)s derived from 3, 6-diisobutyl-2, 5-diketopiperazine and PTMG and study of their degradability in environment, Polym. Degrad. Stab. 97 (2012) 72-80.
DOI: 10.1016/j.polymdegradstab.2011.10.009
Google Scholar