Multiple Toughening Mechanisms of Laminated Ti-TiBw/Ti Composites Fabricated by Diffusion Welding

Article Preview

Abstract:

Laminated Ti-TiBw/Ti composites behave a moderate loading capacity and high fracture ductility with non-castropic failure stage under three-point bending test. Fracture characteristics of laminated composites reveal many extrinsic toughening behaviors, such as, interfacial delamination, bucking and crack deflection, and the interfacial delamination is attributed to the weak bonding strength. Many strengthening and toughening mechanisms are presented in the TiBw/Ti composite layer, such as de-bonding effects of TiB whiskers, multi-fracture of TiB whiskers, crack trapping effect and crack bridging effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-201

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.X. Liu, L.J. Huang, L. Geng, B. Wang, C. Liu, W.C. Zhang. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding. J. Alloys Compd. 602 (2014) 187-192.

DOI: 10.1016/j.jallcom.2014.02.140

Google Scholar

[2] D.J. Smith, Y.Q. Zuo, P.Q. Partidge, A. Wisbey. Bend stiffness and strength of laminates composed of titanium alloy and titanium metal matrix composite. Mat. Sci. Techno. 13 (1997) 35-40.

DOI: 10.1179/mst.1997.13.1.35

Google Scholar

[3] J. Ma, G.E.B. Tan, Z.M. He. Fabrication and Characterization of Ti-TiB2 Functionally Graded Material System. Metall. Mater. Trans. A. 33 (2002) 681-685.

DOI: 10.1007/s11661-002-0130-5

Google Scholar

[4] K.B. Panda, K.S. Chandran. Titanium-titanium boride (Ti-TiB) functionally graded materials through reaction sintering: synthesis, microstructure and properties. Metall. Mater. Trans. A. 34 (2003) 1993-(2003).

DOI: 10.1007/s11661-003-0164-3

Google Scholar

[5] M. Lugovy, V. Slyunyayev, N. Orlovskaya, G. Blugan, J. Kuebler, M. Lewis. Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers. Acta Materialia. 53 (2005) 289-296.

DOI: 10.1016/j.actamat.2004.09.022

Google Scholar

[6] K.L. Hwu, B. Derby. Fracture of metal/ceramic laminates-I. transition from single to multiple cracking. Acta Materialia. 47 (1999) 529-543.

DOI: 10.1016/s1359-6454(98)00357-7

Google Scholar

[7] T.Z. Li, F. Grignon, D.J. Benson, K.S. Vecchio, E.A. Olevsky, F.C. Jiang, M.A. Meyers. Modeling the elastic properties and damage evolution in Ti-Al3Ti metal-intermetallic laminate (MIL) composites. Mater. Sci. Eng. A. 374 (2004) 10-26.

DOI: 10.1016/j.msea.2003.09.074

Google Scholar

[8] A. Rohatgi, D.J. Harach, K.S. Vecchio, K.P. Harvey. Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites. Acta Materialia. 51 (2003) 2933-2957.

DOI: 10.1016/s1359-6454(03)00108-3

Google Scholar

[9] C.M. Cepeda-Jimenez, F. Carreno, O.A. Ruano, A.A. Sarkeeva, A.A. Kruglov, R.Y. Lutfullin. Influence of interfacial defects on the impact toughness of solid state diffusion bonded Ti-6Al-4V alloy based multilayer composites. Mat. Sci. Eng. A. 563 (2013).

DOI: 10.1016/j.msea.2012.11.052

Google Scholar

[10] B.S. Li, J.L. Shang, J.J. Guo, H.Z. Fu. In situ observation of fracture behavior of in situ TiBw/Ti composites. Mat. Sci. Eng. A. 383 (2004) 316-322.

DOI: 10.1016/j.msea.2004.04.071

Google Scholar

[11] B. Lawn. Fracture of brittle solids-second edition. Cambridge solid state science series. Cambridge university press. (1993).

Google Scholar

[12] B.X. Liu, L.J. Huang, L. Geng, B. Kaveendran, B. Wang, X.Q. Song, X.P. Cui. Gradient grain distribution and enhanced properties of novel laminated Ti-TiBw/Ti composites by reaction hot-pressing. Mat. Sci. Eng. A. 595 (2014) 257-265.

DOI: 10.1016/j.msea.2013.12.013

Google Scholar