Influence of Sintering Temperatures on Microstructures and the Thermal Conductivity of CuAlO2 Ceramics

Article Preview

Abstract:

Oxide ceramic is a kind of environmental friendly materials, which has attracted more and more interests for its bunch of advantages such as sound chemical, thermal stability, simple synthetic process, cheap price, harmless and safety. Therefore, Oxide ceramic will be a promising material in the future. In this work, polycrystalline samples of CuAlO2 were prepared by a solid state reaction method. The mixture of pure CuO and Al2O3 powders was firstly pressed under the pressure of 60 MPa, and then 200 MPa to prepare pellets of 5 mm thick and 10 mm in diameter. The green compacts were sintered at five different temperatures (1273 K, 1323 K, 1373 K, 1423 K, 1473 K) for various holding times (5 h, 10 h and 15 h) in the air and then the furnace cooled. The crystalline and microstructures of the sintered CuAlO2 bodies were detected by XRD and SEM. The properties of density, thermal conductivity were also investigated in detail. The experimental results show that CuAlO2 bodies were rhombohedral, belonging to R3m space group. It is found that the density and the thermal conductivity of CuAlO2 ceramics were significantly dependent on the sintering temperatures. The density and thermal conductivity increased with increasing the sintering temperatures. The thermal conductivity of samples sintered at 1273 and 1473 K with the same holding time (10 h) were 9.70 and 35.53 W/mk at the room temperature, 3.41 and 8.29 W/mk at 1100 K, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-227

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Popescu, L.M. Woods, J. Martin, G.S. Nolas, Model of Transport Properties of Thermoelectric Nanocomposite Materials, Phy. Rev. B. 79(2009) 205302-1-205302-7.

DOI: 10.1103/physrevb.79.205302

Google Scholar

[2] A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chattopadhyay, Thermoelectric Properties and Electrical Characteristics of Sputter-Deposited P-CuAlO2 Thin Films, Thin Solid Films. 474(2005) 261-266.

DOI: 10.1016/j.tsf.2004.08.117

Google Scholar

[3] C.T. Chi, I.C. Cheng, J.Z. Chen, Bandgap Tuning of Mgzno in Flexible Transparent N+-Zno: Al/N-Mgzno/P-Cualox: Ca Diodes on Polyethylene Terephthalate Substrates, J. Alloys Compd. 544(2012) 111-114.

DOI: 10.1016/j.jallcom.2012.08.004

Google Scholar

[4] Hicks, L. D. and M. S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Phy. Rev. B. 47(1993) 12727-12731.

DOI: 10.1103/physrevb.47.12727

Google Scholar

[5] J. Ahmed, C.K. Blakely, J. Prakash, S.R. Bruno, M.Z. Yu, Y.Y. Wub, V.V. Poltavets, Scalable Synthesis of Delafossite CuAlO2 Nanoparticles for P-Type Dye-Sensitized Solar Cells Applications, J. Alloys Compd. 591(2014) 275-279.

DOI: 10.1016/j.jallcom.2013.12.199

Google Scholar

[6] J. Lan, X. Liu, H. Zhang Y.B. Duan, Q.M. Chu, M.G. Cao, S.C. Zhang, Preparation and Performance Of CuAlO2 Ceramic Target, Powder Metall. Technol. 29(2011) 169-172.

Google Scholar

[7] J.H. Shy, B.H. Tseng, A Novel Method for Preparing CuAlO2Thin Films and the Film Properties, J. Phy. Chem. Solids. 69(2008) 547-550.

DOI: 10.1016/j.jpcs.2007.07.038

Google Scholar

[8] P. Jood, R. J. Mehta, Y. L. Zhang, G. Peleckis, X. L. Wang, R. W. Siegel, T. Borca-Tasciuc, S. X. Dou and G. Ramanath, Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties, Nano Lett. 11(2011) 4337-4342.

DOI: 10.1021/nl202439h

Google Scholar

[9] K, Park, K.Y. Ko, W.S. Seo, Thermoelectric Properties of CuAlO2, J. Eur. Ceram. Soc. 25(2005) 2219-2222.

Google Scholar

[10] K. Hiroshi, Y.K. Masahiro, H.D. Hiroyuki, K. Masaaki, Y. Hiroshi,H. Hideo, P-Type Electrical Conduction in Transparent Thin Films of CuAlO2, Nature. 389(1997) 939-942.

DOI: 10.1038/40087

Google Scholar

[11] K. Koumoto, H. Koduka, W.S. Seo, Thermoelectric Properties of Single Crystal CuAlO2 with a Layered Structure, J. Mater. Chem. 11(2001) 251-252.

DOI: 10.1039/b006850k

Google Scholar

[12] Q.J. Liu, Z.T. Liu, Q.Q. Gao, L.P. Feng, H. Tian, F. Yan , W. Zeng, Density Functional Theory Study of 3R– and 2H–CuAlO2 in Tensile Stress, Phy. Lett. A. 375(2011) 1608-1611.

DOI: 10.1016/j.physleta.2011.02.062

Google Scholar

[13] N.B. Arghya, W.J. Sang, M. Bong-Ki, Quantum Size Effect in the Photoluminescence Properties of P-Type Semiconducting Transparent CuAlO2 Nanoparticles, J. Alloys Compd. 112(2012) 114329.

Google Scholar

[14] P. Pichanusakorn, P. Bandaru, Nanostructured Thermoelectrics, Mater. Sci. Eng. R. 67 (2010) 19-63.

Google Scholar

[15] P. Piyawong, First-Principles Study of Electronic Structures and Thermoelectric Properties of 2H–CuAlO2, Phys. Lett. A. 379(2015) 853-856.

DOI: 10.1016/j.physleta.2014.04.072

Google Scholar

[16] R.D. Shannox, D.B. Rogers, C.T. Prewitt, Chemistry of Noble Metal Oxides. I. Syntheses and Properties of ABO, Delafossite Compounds, Inorg. Chem. 10(1971) 713-718.

DOI: 10.1021/ic50098a011

Google Scholar

[17] R.S. Ajimsha, K.A. Vanaja, M.K. Jayaraj, P. Misra, V.K. Dixit, L.M. Kukreja, Transparent P-AgCoo2/N-Zno Diode Heterojunction Fabricated by Pulsed Laser Deposition, Thin Solid Films. 515 (2007) 7352-7356.

DOI: 10.1016/j.tsf.2007.03.002

Google Scholar

[18] S.I. Yanagiya, N.V. Nong, J.X. Xu, N. Pryds, The Effect of (Ag, Ni, Zn)-Addition on the Thermoelectric Properties of Copper Aluminate, Materials. 3(2010) 318-328.

DOI: 10.3390/ma3010318

Google Scholar

[19] W. Lan, J.Q. Pan, C.Q. Zhu, G.Q. Wang, Q. Su, X.Q. Liu, E.Q. Xie, E. H. Yan, Role of Oxygen in Structural Properties of Annealed CuAlO2 Films, J. Cryst. Growth. 314(2011) 370-373.

DOI: 10.1016/j.jcrysgro.2010.11.172

Google Scholar

[20] W. Lan, W.L. Cao, M. Zhang, X.Q. Liu, Y.Y. Wang, E.Q. Xie, H. Yan, Annealing Effect on the Structural, Optical, and Electrical Properties of CuAlO2 Films Deposited by Magnetron Sputtering, J. Mater. Sci. 44(2009) 1594-1599.

DOI: 10.1007/s10853-008-3229-2

Google Scholar

[21] W.J. Yuan, X.Y. Xiao, T. Qiu, W.Z. Lu, Temperature Dependence of the Thermal Conductivity of Ain(Al2O3) Ceramics by Hot-Press Sintering, Funct. mater. 45(2014) 02134-02137.

Google Scholar

[22] Y. Lu, K. Maeda, K. Sagara, L. Hao, Y.R. Jin, Improvement of Thermoelectric Properties of CuAlO2 by Excess Oxygen Doping in Annealing, Trans Tech Publications. 340-343.

Google Scholar

[23] Y. Lu, K. Sagara, L. Hao, Z.W. Ji, H.Y. Yoshida, Fabrication of Non-Stoichiometric Titanium Dioxide by Spark Plasma Sintering and Its Thermoelectric Properties, Mater. Trans. 53(2012) 1208-1211.

DOI: 10.2320/matertrans.e-m2012808

Google Scholar

[24] Z.H. Deng, X.D. Fang, R.H. Tao, W.W. Dong, D. Li, X.B. Zhu, The Influence of Growth Temperature and Oxygen on the Phase Compositions of CuAlO2 Thin Films Prepared by Pulsed Laser Deposition, J. Alloys Compd. 466(2008) 408-411.

DOI: 10.1016/j.jallcom.2007.11.064

Google Scholar

[25] P. Poopanya, A. Yangthaisong, C. Rattanapun, A. Wichainchai, J. Electron. Mater. 40(2011) 987-991.

DOI: 10.1007/s11664-010-1475-y

Google Scholar

[26] A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chattopadhyay, Thin Solid Films. 474(2005) 261-266.

DOI: 10.1016/j.tsf.2004.08.117

Google Scholar

[27] K. Park, K.Y. Ko, W.S. Seo, J. Eur. Ceram. Soc. 25(2005) 2219-2222.

Google Scholar