Preparation and Properties of Up-Conversion Luminescent NaYF4:Yb3+, Er3+ Ceramics

Article Preview

Abstract:

A series of ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+, Er3+) ceramics have been successfully prepared by pressureless sintering. The ceramic samples were characterized by X-ray diffraction (XRD), photoluminescence (PL), density and field emission scanning electron microscope (FESEM). The results showed that the phases of the NaYF4:Yb3+, Er3+ ceramic samples transformed when the sintering temperature was changed. The ceramic samples sintered below 600 oC contained both cubic α-NaYF4:Yb3+, Er3+ and hexagonal β-NaYF4:Yb3+, Er3+. The sample sintered at 600oC is the pure hexagonal β-NaYF4:Yb3+, Er3+. When the sintering temperature is above 600 oC, the ceramic samples present the α-NaYF4:Yb3+, Er3+ again. The fluorescence intensity increased firstly and then decreased with the sintering temperature increasing. The luminous intensity of the sample sintered at 600 oC was the highest. The densities of as-prepared ceramic sample increased with the sintering temperature rising. The samples sintered at 600 oC with different holding time possessed the similar crystal phases (β-NaYF4:Yb3+, Er3+) and fluorescence intensity. As the holding time increased, the densities of the samples increased. To obtain more dense ceramics, the ceramics using β-NaYF4:Yb3+, Er3+ powders were prepared by spark plasma sintering (SPS). The maximum relative density reached 97%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

262-271

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Shen, L. Zhao, G. Han, Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy, Adv. Drug Delivery Rev. 65 (2013) 744-755.

DOI: 10.1016/j.addr.2012.05.007

Google Scholar

[2] Z. Gu, L. Yan, G. Tian, S. Li, Z. Chai, Y. Zhao, Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications, Adv. Mater. 25 (2013) 3758-3779.

DOI: 10.1002/adma.201301197

Google Scholar

[3] J. Zhou, Z. Liu, F. Li, Upconversion nanophosphors for small-animal imaging, Chem. Soc. Rev. 41 (2012) 1323-1349.

DOI: 10.1039/c1cs15187h

Google Scholar

[4] D. K. Chatterjee, M. K. Gnanasammandhan, Y. Zhang, Small upconverting fluorescent nanoparticles for biomedical applications, Small 6 (2010) 2781-2795.

DOI: 10.1002/smll.201000418

Google Scholar

[5] H. Dong, L.D. Sun, C.H. Yan, Basic understanding of the lanthanide related upconversion emissions, Nanoscale 5 (2013) 5703-5714.

DOI: 10.1039/c3nr34069d

Google Scholar

[6] M. Lin, Y. Zhao, S. Wang, M. Liu, Z. Duan, Y. Chen, F. Li, F. Xu, T. Lu, Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications, Biotechnol. Adv. 30 (2012) 1551-1561.

DOI: 10.1016/j.biotechadv.2012.04.009

Google Scholar

[7] G. Rumbles, Solid-state optics: A laser that turns down the heat, Nature 409 (2001) 572-573.

DOI: 10.1038/35054649

Google Scholar

[8] L. Wang, Y. Li, Green upconversion nanocrystals for DNA detection, Chem. Commun. (2006) 2557-2559.

Google Scholar

[9] A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer, and H. U. Güdel, Application of NaYF4: Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response, Appl. Phys. Lett. 86 (2005) 013505.

DOI: 10.1063/1.1844592

Google Scholar

[10] M.Y. Ding, C.H. Lu, W.J. Huang, C.F. Jiang, Y.R. Ni, Z.Z. Xu, Effect of heat-treatment temperature on upconversion luminescence of beta-NaYF4: Yb3+, Er3+ nano/microparticles, Wuji Cailiao Xuebao(Journal of Inorganic Materials) 28 (2013) 146-152.

DOI: 10.3724/sp.j.1077.2013.12172

Google Scholar

[11] N. Menyuk, K. Dwight, J. W. Pierce, NaYF4: Yb, Er—an efficient upconversion phosphor, Appl. Phys. Lett. 21 (1972) 159-161.

DOI: 10.1063/1.1654325

Google Scholar

[12] F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles, Nat Mater 10 (2011) 968-973.

DOI: 10.1038/nmat3149

Google Scholar

[13] C. Li, Z. Quan, J. Yang, P. Yang, J. Lin, Highly uniform and monodisperse β-NaYF4: Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties, Inorg. Chem. 46 (2007) 6329-6337.

DOI: 10.1021/ic070335i.s002

Google Scholar

[14] J. F. Suyver, J. Grimm, K. W. Krämer, H. U. Güdel, Highly efficient near-infrared to visible up-conversion process in, J. Lumin. 114 (2005) 53-59.

DOI: 10.1016/j.jlumin.2004.11.012

Google Scholar

[15] R. E. Thoma, G. M. Hebert, H. Insley, C. F. Weaver, Phase equilibria in the system sodium fluoride-yttrium fluoride, Inorg. Chem. 2 (1963) 1005-1012.

DOI: 10.1021/ic50009a030

Google Scholar

[16] Y. Wei, F. Lu, X. Zhang, D. Chen, Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter, J. Alloy. Compd. 427 (2007) 333-340.

DOI: 10.1016/j.jallcom.2006.03.014

Google Scholar

[17] F. Liu, Y. Wang, D. Chen, Y. Yu, Investigation on crystallization kinetics and microstructure of novel transparent glass ceramics containing Nd: NaYF4 nano-crystals, Materials Science and Engineering: B 136 (2007) 106-110.

DOI: 10.1016/j.mseb.2006.09.012

Google Scholar

[18] M. Ding, C. Lu, L. Cao, W. Huang, Y. Ni, Z. Xu, Molten salt synthesis of tetragonal LiYF4: Yb3+/Ln3+ (Ln = Er, Tm, Ho) microcrystals with multicolor upconversion luminescence, CrystEngComm 15 (2013) 6015-6021.

DOI: 10.1039/c3ce40477c

Google Scholar

[19] G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.H. Guo, Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors, Nano Lett. 4 (2004) 2191-2196.

DOI: 10.1021/nl048680h

Google Scholar

[20] G. Wang, W. Qin, J. Zhang, L. Wang, G. Wei, P. Zhu, R. Kim, Controlled synthesis and luminescence properties from cubic to hexagonal NaYF4: Ln3+ (Ln=Eu and Yb/Tm) microcrystals, J. Alloy. Compd. 475 (2009) 452-455.

DOI: 10.1016/j.jallcom.2008.07.050

Google Scholar

[21] R. Chai, H. Lian, Z. Cheng, C. Zhang, Z. Hou, Z. Xu, J. Lin, Preparation and characterization of upconversion luminescent NaYF4: Yb, Er (Tm)/PS bulk transparent nanocomposites through in situ polymerization, J. Colloid Interface Sci. 345 (2010).

DOI: 10.1016/j.jcis.2010.01.082

Google Scholar

[22] A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramos, J. Del-Castillo, V. D. Rodríguez, Sol-gel transparent nano-glass-ceramics containing Eu3+-doped NaYF4 nanocrystals, J. Non-cryst. Solids. 356 (2010) 933-936.

DOI: 10.1016/j.jnoncrysol.2009.12.023

Google Scholar

[23] T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, F. Li, Water-soluble NaYF4: Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging, Inorg. Chem. Commun. 13 (2010) 392-394.

DOI: 10.1016/j.inoche.2009.12.031

Google Scholar

[24] M. Wang, Y. Zhu, C. Mao, Synthesis of NIR-responsive NaYF4: Yb, Er upconversion fluorescent nanoparticles using an optimized solvothermal method and their applications in enhanced decelopment of latent fingerprints on various smooth substrates, Langmuir 31 (2015).

DOI: 10.1021/acs.langmuir.5b01151

Google Scholar

[25] X. Huang, G. Hu, Q. Xu, X. Li, Q. Yu, Molten-salt synthesis and upconversion of hexagonal NaYF4: Er3+, Yb3+ micro-/nano-crystals, J. Alloy. Compd. 616 (2014) 652-661.

DOI: 10.1016/j.jallcom.2014.07.067

Google Scholar

[26] L. Zeng, Y. Pan, Y. Tian, X. Wang, W. Ren, S. Wang, G. Lu, A. Wu, Doxorubicin-loaded NaYF4: Tb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers, Biomaterials 57 (2015).

DOI: 10.1016/j.biomaterials.2015.04.006

Google Scholar

[27] J. Jin, Y.J. Gu, C.W.Y. Man, J. Cheng, Z. Xu, Y. Zhang, H. Wang, V.H.Y. Lee, S.H. Cheng, W.T. Wong, Polymer-coated NaYF4: Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging, ACS Nano 5 (2011) 7838-7847.

DOI: 10.1021/nn201896m

Google Scholar

[28] M. Veith, S. Mathur, A. Kareiva, M. Jilavi, M. Zimmer, V. Huch, Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12 via different sol-gel methods, J. Mater. Chem. 9 (1999) 3069-3079.

DOI: 10.1039/a903664d

Google Scholar

[29] S. M. Sim, K. A. Keller, T. I. Mah, Phase formation in yttrium aluminum garnet powders synthesized by chemical methods, J. Mater. Sci. 35 (2000) 713-717.

Google Scholar

[30] A. Ikesue, I. Furusato, K. Kamata, Fabrication of polycrystal line, transparent YAG ceramics by a solid-state reaction method, J. Am. Ceram. Soc. 78 (1995) 225-228.

DOI: 10.1111/j.1151-2916.1995.tb08389.x

Google Scholar

[31] A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, Fabrication and optical properties of high-performance polycrystalline Nd: YAG ceramics for solid-state lasers, J. Am. Ceram. Soc. 78 (1995) 1033-1040.

DOI: 10.1111/j.1151-2916.1995.tb08433.x

Google Scholar

[32] L. Wang, J. Zhang, W. Jiang, Recent development in reactive synthesis of nanostructured bulk materials by spark plasma sintering, Int. J. Refract. Met. H. 39 (2013) 103-112.

DOI: 10.1016/j.ijrmhm.2013.01.017

Google Scholar