Polydopamine Nanoparticle for Poly(N-Isopropylacrylamide)-Based Nanocomposite Hydrogel with Good Free-Radical-Scavenging Property

Article Preview

Abstract:

Nanocomposite hydrogels (NC gels) consisting of poly (N-Isopropyl acrylamide) (pNIPAM)/polydopamine nanoparticles (PDAPs) were prepared by in-situ-free-radical polymerization of N-isopropyl acrylamide in the presence of modified PDAP in aqueous solution. The composition of the NC gels could be controlled directly by altering the composition of the initial reaction mixture. The lower critical solution temperature (LCST) of the NC gels were studied by DSC, and the LCST of both of pure pNIPAM hydrogel and NC gels was at 34°C. Besides, the NC gels showed superior antioxidant property, and the ability to scavenge activity of NC gel was up to 70% with the addition of 6 wt% modified PDAP into pNIPAM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

94-98

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Sidorenko, T, Krupenkin, A. Taylor, et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315 (2007), 487–490.

DOI: 10.1126/science.1135516

Google Scholar

[2] Y. Takashima, S. Hatanaka, M. Otsubo, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat. Commun. 3 (2012), 1270.

DOI: 10.1038/ncomms2280

Google Scholar

[3] D. Seliktar, Designing cell-compatible hydrogels for biomedical applications. Science 336 (2012), 1124–1128.

DOI: 10.1126/science.1214804

Google Scholar

[4] M. A. Stuart, W. T. S. Huck, J. Genzer, et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9 (2010), 101–113.

Google Scholar

[5] L. Liu, W. Wang, X. J. Ju, et al. Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter 6 (2010), 3759–3763.

DOI: 10.1039/c002231d

Google Scholar

[6] J. Q. Liu, C. F. Chen, H. L. Wang, et al. Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. Acs Nano 6 (2012), 8194-8202.

DOI: 10.1021/nn302874v

Google Scholar

[7] R. Q. Liu, S. M. Liang, X. Z. Tang, et al. Tough and highly stretchable grapheme oxide/polyacrylamide nanocomposite hydrogels. J. Mater. Chem. 22 (2012), 14160-14167.

DOI: 10.1039/c2jm32541a

Google Scholar

[8] J. C. Fan, Z. X. S, J. Y, et al. Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J. Mater. Chem. A. 1 (2013), 7433-7443.

DOI: 10.1039/c3ta10639j

Google Scholar

[9] T. Fyjigaya, T. Morimoto, Y. Niidome, et al. NIR Laser-Driven Reversible Volume Phase Transition of Single-Walled Carbon Nanotube/Poly(N-isopropylacrylamide) Composite Gels. Adv. Mater. 20 (2008), 3610-3614.

DOI: 10.1002/adma.200800494

Google Scholar

[10] Y. T. Wu, Z. Zhou, M. F. Zhu, Facile in-situ fabrication of novel organic nanoparticle hydrogels with excellent mechanical properties. J. Mater. Chem. 19 (2009), 7340-7346.

DOI: 10.1039/b909125d

Google Scholar

[11] W. J. Chuang, W. Y. Chiu, H. J. Tai. Temperature-dependent conductive composites: poly(N-isopropylacrylamideco-N-methylol acrylamide) and carbon black composite films. J. Mater. Chem. 22 (2012), 20311-20318.

DOI: 10.1039/c2jm33601d

Google Scholar

[12] L. W. Xia, X. J. Ju, L. Y. Chu, et al. Responsive hydrogels with poly(N-isopropylacrylamide-co-acrylic acid) colloidal spheres as building blocks. Journal of Colloid and Interface Science. 349 (2010), 106-113.

DOI: 10.1016/j.jcis.2010.05.070

Google Scholar

[13] L. W. Xia, R. Xie, L. Y. Chu, et al. Nano-structured smart hydrogels with rapid response and high elasticity. Nature communications. 4 (2013), 2226-2236.

DOI: 10.1038/ncomms3226

Google Scholar

[14] H. Lee, S. M. Dellatore, P. B. Messersmith, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science 318 (2007), 426-430.

DOI: 10.1126/science.1147241

Google Scholar

[15] I. F. Nata, T. M. Wu, C. K. Lee, et al. A chitin nanofibril reinforced multifunctional monolith poly(vinyl alcohol) cryogel. J. Mater. Chem. B, 2 (2014), 4018. -4113.

DOI: 10.1039/c4tb00175c

Google Scholar

[16] K. Y. Ju, Y. Lee, S. et al. Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property. Biomacromolecules, 12 (2011), 625–632.

DOI: 10.1021/bm101281b

Google Scholar

[17] K. L. Ai, Y. L. Liu, G. Q. Lu, Sp2 C-dominant N-doped Carbon Sub-micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient Oxygen-Reduction Catalysts. Adv. Mater., 2013, 25, 998–1003.

DOI: 10.1002/adma.201203923

Google Scholar

[18] J. Yan, L. P. Yang, M. F. Lin, et al. Polydopamine spheres as active templates for convenient synthesis of various nanostructures. Small, 9 (2013), 596-603.

DOI: 10.1002/smll.201201064

Google Scholar

[19] S. Q. Xiong, Y. Wang, Z. M. Hu, et al. Polydopamine particles for next-generation multifunctional biocomposites. J. Mater. Chem. A, 2 (2014), 7578-7587.

DOI: 10.1039/c4ta00235k

Google Scholar