[1]
Z. G. Chen, Z. Xie, Y. C. Li, Q. M. Ma, Y. Liu, Stability of small Ni Ti bimetallic clusters studied by density functional theory, Chin. Phys. B 19 (2010) 043102.
DOI: 10.1088/1674-1056/19/4/043102
Google Scholar
[2]
J. C. Wang, F. Q. You, J. L. Yin, X. F. Tang, J. L. Qin, Positron study of defects in TiNi Alloys, Chin. Phys. Soc. 9 (2000) 0216-06.
Google Scholar
[3]
K. A. Jafa, A. A. Behnam, Z. Mehrnoush, Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications, Mater. Sci. Eng., C. 30 (2010) 1112-1117.
DOI: 10.1016/j.msec.2010.06.007
Google Scholar
[4]
J. Buschbeck, J. K. Kawasaki, A. Kozhanov, R. D. James, C. J. Palmstrøm, Martensite transformation of epitaxial Ni-Ti films, Appl. Phys. Lett. 98 (2011) 191901.
DOI: 10.1063/1.3589361
Google Scholar
[5]
K. N. Nigussa, J. A. Støvneng, Oxidation of pure and potassium-doped NiTi shape memory surface: A density functional theory investigation, Phys. Rev. B 82 (2010) 245401.
DOI: 10.1103/physrevb.82.245401
Google Scholar
[6]
P. Shi, F. T. Cheng, H. C. Man, Improvement in corrosion resistance of NiTi by anodization in acetic acid, Mater. Lett. 61 (2007) 2385-21388.
DOI: 10.1016/j.matlet.2006.09.020
Google Scholar
[7]
J. X. Zhu, Y. H. Li, F. L. Meng, C. S. Liu, W. T. Zheng, L. M. Wang, A first principles investigation on NiTi alloy, Acta Phys. Sin. 57 (2008) 7204-06.
Google Scholar
[8]
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992).
DOI: 10.1103/physrevb.46.6671
Google Scholar
[9]
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 (1996) 11169.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[10]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[11]
X. Liu, H. M. Guo, C. G. Meng, Oxygen Adsorption and Diffusion on NiTi Alloy (100) Surface: A Theoretical Study, J. Phys. Chem. C 116 (2012) 21771-21779.
DOI: 10.1021/jp304343k
Google Scholar
[12]
H. Z. Zhang, S. Q. Wang, First-principles study of Ti3AC2(A=Si, Al) (001) surfaces, Acta Mater. 55 (2007) 4645-4655.
DOI: 10.1016/j.actamat.2007.04.033
Google Scholar
[13]
S. Y. Liu, J. X. Shang, F. H. Wang, Y. Zhang, ab initio study of surface self-segregation effect on the adsorption of oxygen on the γ-TiAl(111) surface, Phys. Rev. B 79 (2009) 075419.
Google Scholar
[14]
Y. Kido, T. Nishimura, Y. Hoshino, H. Namba, Surface structures of SrTiO3(0 0 1) and Ni/SrTiO3(0 0 1) studied by medium-energy ion scattering and SR-photoelectron spectroscopy, Nucl. Instrum. Methods B 161 (2000) 371-376.
DOI: 10.1016/s0168-583x(99)00715-6
Google Scholar
[15]
L. Wang, J. X. Shang, F. H. Wang, Y. Zhang, A. Chroneos, Unexpected relationship between interlayer spacings and surface/cleavage energies in γ-TiAl: density functional study, J. Phys. Chem. Mater. 23 (2011) 265009.
DOI: 10.1088/0953-8984/23/26/265009
Google Scholar
[16]
L. Vitos, A.V. Ruban, H. L. Skriver, J. Kollár, The surface energy of metals, Surf. Sci. 411 (1998) 186–202.
DOI: 10.1016/s0039-6028(98)00363-x
Google Scholar