Surface Stability of NiTi Alloy: A Density-Functional Theory Study

Article Preview

Abstract:

The low-index (001), (111) and (110) surfaces of austenitic NiTi were investigated by the use of first principles calculations. The calculated results showed that the non-polar NiTi (110) surface was the most stable under most of the Ti chemical potential. The polar Ni terminated NiTi (001) surface was the most stable under Ni-rich conditions. The Ni-terminated surfaces were more stable than their corresponding Ti-terminated surfaces in the entire range of Ti chemical potential. The surface interlayer relaxations of the Ni-terminated surfaces were much larger than those of the corresponding Ti-terminated surfaces. The Ti atoms in the surface layer of the non-polar NiTi (110) surface were more outward than Ni atoms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

259-265

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. G. Chen, Z. Xie, Y. C. Li, Q. M. Ma, Y. Liu, Stability of small Ni Ti bimetallic clusters studied by density functional theory, Chin. Phys. B 19 (2010) 043102.

DOI: 10.1088/1674-1056/19/4/043102

Google Scholar

[2] J. C. Wang, F. Q. You, J. L. Yin, X. F. Tang, J. L. Qin, Positron study of defects in TiNi Alloys, Chin. Phys. Soc. 9 (2000) 0216-06.

Google Scholar

[3] K. A. Jafa, A. A. Behnam, Z. Mehrnoush, Biocompatibility and corrosion behavior of the shape memory NiTi alloy in the physiological environments simulated with body fluids for medical applications, Mater. Sci. Eng., C. 30 (2010) 1112-1117.

DOI: 10.1016/j.msec.2010.06.007

Google Scholar

[4] J. Buschbeck, J. K. Kawasaki, A. Kozhanov, R. D. James, C. J. Palmstrøm, Martensite transformation of epitaxial Ni-Ti films, Appl. Phys. Lett. 98 (2011) 191901.

DOI: 10.1063/1.3589361

Google Scholar

[5] K. N. Nigussa, J. A. Støvneng, Oxidation of pure and potassium-doped NiTi shape memory surface: A density functional theory investigation, Phys. Rev. B 82 (2010) 245401.

DOI: 10.1103/physrevb.82.245401

Google Scholar

[6] P. Shi, F. T. Cheng, H. C. Man, Improvement in corrosion resistance of NiTi by anodization in acetic acid, Mater. Lett. 61 (2007) 2385-21388.

DOI: 10.1016/j.matlet.2006.09.020

Google Scholar

[7] J. X. Zhu, Y. H. Li, F. L. Meng, C. S. Liu, W. T. Zheng, L. M. Wang, A first principles investigation on NiTi alloy, Acta Phys. Sin. 57 (2008) 7204-06.

Google Scholar

[8] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (1992).

DOI: 10.1103/physrevb.46.6671

Google Scholar

[9] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 54 (1996) 11169.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[10] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[11] X. Liu, H. M. Guo, C. G. Meng, Oxygen Adsorption and Diffusion on NiTi Alloy (100) Surface: A Theoretical Study, J. Phys. Chem. C 116 (2012) 21771-21779.

DOI: 10.1021/jp304343k

Google Scholar

[12] H. Z. Zhang, S. Q. Wang, First-principles study of Ti3AC2(A=Si, Al) (001) surfaces, Acta Mater. 55 (2007) 4645-4655.

DOI: 10.1016/j.actamat.2007.04.033

Google Scholar

[13] S. Y. Liu, J. X. Shang, F. H. Wang, Y. Zhang, ab initio study of surface self-segregation effect on the adsorption of oxygen on the γ-TiAl(111) surface, Phys. Rev. B 79 (2009) 075419.

Google Scholar

[14] Y. Kido, T. Nishimura, Y. Hoshino, H. Namba, Surface structures of SrTiO3(0 0 1) and Ni/SrTiO3(0 0 1) studied by medium-energy ion scattering and SR-photoelectron spectroscopy, Nucl. Instrum. Methods B 161 (2000) 371-376.

DOI: 10.1016/s0168-583x(99)00715-6

Google Scholar

[15] L. Wang, J. X. Shang, F. H. Wang, Y. Zhang, A. Chroneos, Unexpected relationship between interlayer spacings and surface/cleavage energies in γ-TiAl: density functional study, J. Phys. Chem. Mater. 23 (2011) 265009.

DOI: 10.1088/0953-8984/23/26/265009

Google Scholar

[16] L. Vitos, A.V. Ruban, H. L. Skriver, J. Kollár, The surface energy of metals, Surf. Sci. 411 (1998) 186–202.

DOI: 10.1016/s0039-6028(98)00363-x

Google Scholar