[1]
E. David, J. Kopac, Aluminum recovery as a product with high added value using aluminum hazardous waste. J. Hazard. Mater., 261(2013) 316-324.
DOI: 10.1016/j.jhazmat.2013.07.042
Google Scholar
[2]
C. Chen, J. Wang, D. Shu, P. Li, J. Xue, B. Sun, A Novel Method to Remove Iron Impurity from Aluminum. Mater. Trans., 52(2011) 1629-1633.
DOI: 10.2320/matertrans.m2011108
Google Scholar
[3]
L. F. Zhang, J. W. Gao, L. N. W. Damoah, D. G. Robertson, REMOVAL OF IRON FROM ALUMINUM: A REVIEW. Miner. Process. Extr. M., 33(2012) 99-157.
Google Scholar
[4]
G. Gaustad, E. Olivetti, R. Kirchain, Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resour. Conserv. Recy., 58(2012) 79-87.
DOI: 10.1016/j.resconrec.2011.10.010
Google Scholar
[5]
K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, T. Nagasaka, Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ. Sci. Technol., 44(2010) 5594-5600.
DOI: 10.1021/es9038769
Google Scholar
[6]
J. O. Park, C. H. Paik, Y. H. Huang, R. C. Alkire, Influence of Fe-Rich Intermetallic Inclusions on Pit Initiation on Aluminum Alloys in Aerated NaCl. Journal of the electrochemical society, 1999. 146(1999) 517-523.
DOI: 10.1149/1.1391637
Google Scholar
[7]
P. Skjerpe, Intermetallic phases formed during DC-casting of an Al-0. 25 Wt Pct Fe-0. 13 Wt Pct Si alloy. Metall. Mater. Trans. A, 18(1987) 189-200.
DOI: 10.1007/bf02825700
Google Scholar
[8]
Y. He, Q. Li, W. Liu, Effect of combined magnetic field on the eliminating inclusions from liquid aluminum alloy. MATER. LETT., 65(2011) 1226-1228.
DOI: 10.1016/j.matlet.2011.01.061
Google Scholar
[9]
J. W. Gao, D. Shu, J. Wang, B. D. Sun, Effects of Na2B4O7 on the elimination of iron from aluminum melt. Scripta materialia, 57(2007) 197-200.
DOI: 10.1016/j.scriptamat.2007.04.009
Google Scholar
[10]
M. Zhou, D. Shu, K. Li, W. Y. Zhang, B. D. Sun, J. Wang, H. J. Ni, Performance improvement of industrial pure aluminum treated by stirring molten fluxes. Mater. Sci. Eng. A, 347(2003) 280-290.
DOI: 10.1016/s0921-5093(02)00611-1
Google Scholar
[11]
D. Shu, T. X. Li, B. D. Sun, J. Wang, Y. H. Zhou, Study of electromagnetic separation of nometallic inclusions from aluminum melt. Metall. Mater. Trans. A, 30(1999) 2979-2988.
DOI: 10.1007/s11661-999-0135-4
Google Scholar
[12]
H. L. de Moraes, J. R. de Oliveira, D. C. R. Espinosa, J. A. S. Tenório, Removal of iron from molten recycled aluminum through intermediate phase filtration. Mater. Trans., 47(2006) 1731-1736.
DOI: 10.2320/matertrans.47.1731
Google Scholar
[13]
T. Kino, E. Hashimoto,N. Kamigaki, Y. Kiso, R. Matsushita, Study on the trace elements in zone-refined aluminum. Trans. JIM, 18(1977) 305-312.
DOI: 10.2320/matertrans1960.18.305
Google Scholar
[14]
R. J. Pomfret, P. Grieveson, The kinetics of slag-metal reactions. Canadian Metallurgical Quarterly, 22(1983) 287-299.
DOI: 10.1179/cmq.1983.22.3.287
Google Scholar
[15]
B. M. Patchett, D. R. Milner, Slag-Metal Reactions in the Electroslag Process. Welding Journal, 51(1952) 491-505.
Google Scholar
[16]
T. Koishi, Y. Arai, Y. Shirakawa, S. Tamaki, Transport coefficients in molten NaCl by computer simulation. Journal of the Physical Society of Japan, 66(1997) 3188-3193.
DOI: 10.1143/jpsj.66.3188
Google Scholar
[17]
D. Nevins, F. J. Spera, Accurate computation of shear viscosity from equilibrium molecular dynamics simulations. Mol. Simulat., 33(2007) 1261-1266.
DOI: 10.1080/08927020701675622
Google Scholar
[18]
M. Matsumiya, K. Seo, A molecular dynamics simulation of the transport properties of molten (La1/3, K) Cl. Zeitschrift für Naturforschung. A, A Journal of physical sciences, 60(2005) 187-192.
DOI: 10.1515/zna-2005-0310
Google Scholar
[19]
V. R. Manga, S. Bringuier, J. Paul, S. Jayaraman, P. Lucas, P. Deymier, K. Muralidharan, Molecular dynamics simulations and thermodynamic modeling of NaCl–KCl–ZnCl2 ternary system. Calphad, 46(2014) 176-183.
DOI: 10.1016/j.calphad.2014.04.004
Google Scholar
[20]
Wang, J., Sun Z., Lu G., Yu J. G., Molecular Dynamics Simulations of the Local Structures and Transport Coefficients of Molten Alkali Chlorides. The Journal of Physical Chemistry B, 118(2014) 10196-10206.
DOI: 10.1021/jp5050332
Google Scholar
[21]
W. A. Eaton, V. Muñoz, Impact of atomistic molecular dynamics simulations on understanding how proteins fold: an experimentalist's perspective. Bioinformatics, (2014).
Google Scholar
[22]
Z. Hou, Z. Tian, R. Liu, K. Dong, A. Yu, Formation mechanism of bulk nanocrystalline aluminium with multiply twinned grains by liquid quenching: A molecular dynamics simulation study. Computational Materials Science, 99(2015) 256-261.
DOI: 10.1016/j.commatsci.2014.12.037
Google Scholar
[23]
Z. Lu, M. J. Noordhoek, Deformation processes in polycrystalline Zr by molecular dynamics simulations. Journal of Nuclear Materials, 462(2015) 147-159.
DOI: 10.1016/j.jnucmat.2015.03.048
Google Scholar
[24]
T. Wyttenbach, N. A. Pierson, D. E. Clemmer, M. T. Bowers, Ion mobility analysis of molecular dynamics, Annual review of physical chemistry, 65(2014) 175-196.
DOI: 10.1146/annurev-physchem-040513-103644
Google Scholar
[25]
C. J. Bardeen, The structure and dynamics of molecular excitons. Annual review of physical chemistry, 65(2014): 127-148.
Google Scholar
[26]
M. Segall, P. Linda, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, Materials studio CASTEP, version 2. 2. Accelrys: San Diego, CA, (2002).
Google Scholar
[27]
V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. International Journal of Quantum Chemistry, 77(2000).
DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c
Google Scholar
[28]
D. Zhao, J. F. Han, J. Y. Cui, X. Zong, C. Li, A new Pb (iv)-based photocathode material Sr 2 PbO 4 with good light harvesting ability. Journal of Materials Chemistry A, 3(2015)12051-12058.
DOI: 10.1039/c5ta02349a
Google Scholar
[29]
K. Zhang, H. Li, L. Li, X. F. Bian, Why does the second peak of pair correlation functions split in quasi-two-dimensional disordered films? Applied Physics Letters, 102(2013) 071907.
DOI: 10.1063/1.4793187
Google Scholar