Investigation on Structures of Aluminum Melts Containing Small Amount of Silicon Element

Article Preview

Abstract:

Aluminum melt structures play significant roles in process of impurity element eliminations. In order to investigate the aluminum melt structures containing small amount of silicon element, several compositions of aluminum melts were simulated. Molecular dynamics simulation method was employed to investigate the melt structures, concentration profiles and diffusion properties. For purpose of studying structure stability, related calculations were performed by first principles molecular dynamics method. The calculated results suggest that silicon concentration has obvious influence on silicon-silicon radial distribution function; silicon element segregates in local zone in each concentration of aluminum; there is no obvious relationship between silicon concentration and silicon diffusion coefficient; the stable Al-Si phase is formed by substitution lattice point or interstitial space; and position of Fermi energy of the stable structure corresponds to the valley of density of states.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-280

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. David, J. Kopac, Aluminum recovery as a product with high added value using aluminum hazardous waste. J. Hazard. Mater., 261(2013) 316-324.

DOI: 10.1016/j.jhazmat.2013.07.042

Google Scholar

[2] C. Chen, J. Wang, D. Shu, P. Li, J. Xue, B. Sun, A Novel Method to Remove Iron Impurity from Aluminum. Mater. Trans., 52(2011) 1629-1633.

DOI: 10.2320/matertrans.m2011108

Google Scholar

[3] L. F. Zhang, J. W. Gao, L. N. W. Damoah, D. G. Robertson, REMOVAL OF IRON FROM ALUMINUM: A REVIEW. Miner. Process. Extr. M., 33(2012) 99-157.

Google Scholar

[4] G. Gaustad, E. Olivetti, R. Kirchain, Improving aluminum recycling: A survey of sorting and impurity removal technologies. Resour. Conserv. Recy., 58(2012) 79-87.

DOI: 10.1016/j.resconrec.2011.10.010

Google Scholar

[5] K. Nakajima, O. Takeda, T. Miki, K. Matsubae, S. Nakamura, T. Nagasaka, Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ. Sci. Technol., 44(2010) 5594-5600.

DOI: 10.1021/es9038769

Google Scholar

[6] J. O. Park, C. H. Paik, Y. H. Huang, R. C. Alkire, Influence of Fe-Rich Intermetallic Inclusions on Pit Initiation on Aluminum Alloys in Aerated NaCl. Journal of the electrochemical society, 1999. 146(1999) 517-523.

DOI: 10.1149/1.1391637

Google Scholar

[7] P. Skjerpe, Intermetallic phases formed during DC-casting of an Al-0. 25 Wt Pct Fe-0. 13 Wt Pct Si alloy. Metall. Mater. Trans. A, 18(1987) 189-200.

DOI: 10.1007/bf02825700

Google Scholar

[8] Y. He, Q. Li, W. Liu, Effect of combined magnetic field on the eliminating inclusions from liquid aluminum alloy. MATER. LETT., 65(2011) 1226-1228.

DOI: 10.1016/j.matlet.2011.01.061

Google Scholar

[9] J. W. Gao, D. Shu, J. Wang, B. D. Sun, Effects of Na2B4O7 on the elimination of iron from aluminum melt. Scripta materialia, 57(2007) 197-200.

DOI: 10.1016/j.scriptamat.2007.04.009

Google Scholar

[10] M. Zhou, D. Shu, K. Li, W. Y. Zhang, B. D. Sun, J. Wang, H. J. Ni, Performance improvement of industrial pure aluminum treated by stirring molten fluxes. Mater. Sci. Eng. A, 347(2003) 280-290.

DOI: 10.1016/s0921-5093(02)00611-1

Google Scholar

[11] D. Shu, T. X. Li, B. D. Sun, J. Wang, Y. H. Zhou, Study of electromagnetic separation of nometallic inclusions from aluminum melt. Metall. Mater. Trans. A, 30(1999) 2979-2988.

DOI: 10.1007/s11661-999-0135-4

Google Scholar

[12] H. L. de Moraes, J. R. de Oliveira, D. C. R. Espinosa, J. A. S. Tenório, Removal of iron from molten recycled aluminum through intermediate phase filtration. Mater. Trans., 47(2006) 1731-1736.

DOI: 10.2320/matertrans.47.1731

Google Scholar

[13] T. Kino, E. Hashimoto,N. Kamigaki, Y. Kiso, R. Matsushita, Study on the trace elements in zone-refined aluminum. Trans. JIM, 18(1977) 305-312.

DOI: 10.2320/matertrans1960.18.305

Google Scholar

[14] R. J. Pomfret, P. Grieveson, The kinetics of slag-metal reactions. Canadian Metallurgical Quarterly, 22(1983) 287-299.

DOI: 10.1179/cmq.1983.22.3.287

Google Scholar

[15] B. M. Patchett, D. R. Milner, Slag-Metal Reactions in the Electroslag Process. Welding Journal, 51(1952) 491-505.

Google Scholar

[16] T. Koishi, Y. Arai, Y. Shirakawa, S. Tamaki, Transport coefficients in molten NaCl by computer simulation. Journal of the Physical Society of Japan, 66(1997) 3188-3193.

DOI: 10.1143/jpsj.66.3188

Google Scholar

[17] D. Nevins, F. J. Spera, Accurate computation of shear viscosity from equilibrium molecular dynamics simulations. Mol. Simulat., 33(2007) 1261-1266.

DOI: 10.1080/08927020701675622

Google Scholar

[18] M. Matsumiya, K. Seo, A molecular dynamics simulation of the transport properties of molten (La1/3, K) Cl. Zeitschrift für Naturforschung. A, A Journal of physical sciences, 60(2005) 187-192.

DOI: 10.1515/zna-2005-0310

Google Scholar

[19] V. R. Manga, S. Bringuier, J. Paul, S. Jayaraman, P. Lucas, P. Deymier, K. Muralidharan, Molecular dynamics simulations and thermodynamic modeling of NaCl–KCl–ZnCl2 ternary system. Calphad, 46(2014) 176-183.

DOI: 10.1016/j.calphad.2014.04.004

Google Scholar

[20] Wang, J., Sun Z., Lu G., Yu J. G., Molecular Dynamics Simulations of the Local Structures and Transport Coefficients of Molten Alkali Chlorides. The Journal of Physical Chemistry B, 118(2014) 10196-10206.

DOI: 10.1021/jp5050332

Google Scholar

[21] W. A. Eaton, V. Muñoz, Impact of atomistic molecular dynamics simulations on understanding how proteins fold: an experimentalist's perspective. Bioinformatics, (2014).

Google Scholar

[22] Z. Hou, Z. Tian, R. Liu, K. Dong, A. Yu, Formation mechanism of bulk nanocrystalline aluminium with multiply twinned grains by liquid quenching: A molecular dynamics simulation study. Computational Materials Science, 99(2015) 256-261.

DOI: 10.1016/j.commatsci.2014.12.037

Google Scholar

[23] Z. Lu, M. J. Noordhoek, Deformation processes in polycrystalline Zr by molecular dynamics simulations. Journal of Nuclear Materials, 462(2015) 147-159.

DOI: 10.1016/j.jnucmat.2015.03.048

Google Scholar

[24] T. Wyttenbach, N. A. Pierson, D. E. Clemmer, M. T. Bowers, Ion mobility analysis of molecular dynamics, Annual review of physical chemistry, 65(2014) 175-196.

DOI: 10.1146/annurev-physchem-040513-103644

Google Scholar

[25] C. J. Bardeen, The structure and dynamics of molecular excitons. Annual review of physical chemistry, 65(2014): 127-148.

Google Scholar

[26] M. Segall, P. Linda, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, Materials studio CASTEP, version 2. 2. Accelrys: San Diego, CA, (2002).

Google Scholar

[27] V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study. International Journal of Quantum Chemistry, 77(2000).

DOI: 10.1002/(sici)1097-461x(2000)77:5<895::aid-qua10>3.0.co;2-c

Google Scholar

[28] D. Zhao, J. F. Han, J. Y. Cui, X. Zong, C. Li, A new Pb (iv)-based photocathode material Sr 2 PbO 4 with good light harvesting ability. Journal of Materials Chemistry A, 3(2015)12051-12058.

DOI: 10.1039/c5ta02349a

Google Scholar

[29] K. Zhang, H. Li, L. Li, X. F. Bian, Why does the second peak of pair correlation functions split in quasi-two-dimensional disordered films? Applied Physics Letters, 102(2013) 071907.

DOI: 10.1063/1.4793187

Google Scholar