[1]
Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: a review article, J. Alloys and Compd. 619 (2015) 639-651.
DOI: 10.1016/j.jallcom.2014.09.061
Google Scholar
[2]
D. S. Svyetlichnyy, Modeling of grain refinement by cellular automata, Comput. Mater. Sci. 77 (2013) 408-416.
DOI: 10.1016/j.commatsci.2013.04.065
Google Scholar
[3]
X. Song, G. Liu, N. Gu, Influence of the second-phase particle size on grain growth based on computer simulation, Mater. Sci. Eng. A 270 (1999) 178-182.
DOI: 10.1016/s0921-5093(99)00177-x
Google Scholar
[4]
S. M. H. Haghighat, A. K. Taheri, Investigation of limiting grain size and microstructure homogeneity in the presence of second phase particles using the Monte Carlo method, J. Mater. Process Tech. 195 (2008) 195-203.
DOI: 10.1016/j.jmatprotec.2007.04.132
Google Scholar
[5]
J. Gao, R. G. Thompson, B. R. Patterson, Computer simulation of grain growth with second phase particle pinning, Acta Mater. 45 (1997) 3656-3658.
DOI: 10.1016/s1359-6454(97)00048-7
Google Scholar
[6]
N. Wang, Y. Wen, L. Q. Chen, Pinning force from multiple second-phase particles in grain growth, Comput. Mater. Sci. 93 (2014) 81- 85.
DOI: 10.1016/j.commatsci.2014.06.030
Google Scholar
[7]
K. Chang, W. Feng, L. Q. Chen, Effect of second-phase particles morphology on grain growth kinetics, Acta Meter. 57 (2009) 5229-5236.
DOI: 10.1016/j.actamat.2009.07.025
Google Scholar
[8]
G. Z. Zhou, Y. X. Wang, Z. Chen, Phase-field method simulation of the effect of hard particles with different shapes on two-phase grain growth, Acta Metall Sin. 48 (2012) 227-234.
DOI: 10.3724/sp.j.1037.2011.00609
Google Scholar
[9]
A. Mallick, Effect of second phase mobile particles on polycrystalline grain growth: a phase-feld approch, Comput. Mater. Sci. 67 (2013) 27-34.
DOI: 10.1016/j.commatsci.2012.08.022
Google Scholar
[10]
Y. P. Zong, M. T. Wang, W. Guo, Phase field simulation on recrystallization and secondary phase precipitation under strain field, Acta. Phys. Sin. 58 (2009) S161-S168.
DOI: 10.7498/aps.58.161
Google Scholar
[11]
Y. Wu, B. Y. Zong, X. G. Zhang, M. T. Wang, Grain growth in multiple scales of polycrystalline AZ31 magnesium alloy by phase field simulation, Metall. Mater. Trans. A 44 (2013) 1599-1610.
DOI: 10.1007/s11661-012-1478-9
Google Scholar
[12]
S. M. Allen, J. W. Cahn, A micronscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metall. 27 (1979) 1085-1095.
DOI: 10.1016/0001-6160(79)90196-2
Google Scholar
[13]
J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J Chem. Phys. 28 (1958) 258-267.
DOI: 10.1063/1.1744102
Google Scholar
[14]
D. Fan, L. Q. Chen, Computer simulation of grain growth using a contiuum field model, Acta Mater. 45 (1996) 611-622.
Google Scholar
[15]
X. G. Zhang, Y. P. Zong, M. T. Wang, Y. Wu, A physical model to express grain boundaries in grain growth simulation by phase- field method, Acta Phys. Sin. 60 (2011) 755-763.
Google Scholar
[16]
N. Moelans, B. Blanpain, P. Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta. Mater. 53 (2005) 1771-1781.
DOI: 10.1016/j.actamat.2004.12.026
Google Scholar
[17]
N. Moelans, B. Blanpain, P. Wollants, Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles, Acta Mater. 54 (2006) 1175-1184.
DOI: 10.1016/j.actamat.2005.10.045
Google Scholar
[18]
Y. H. Wen, B. Wang, J. P. Simmons, Y. Wang, A phase-field model for heat treatment applications in Ni-based alloys, Acta. Mater. 54 (2006) 2087-(2099).
DOI: 10.1016/j.actamat.2006.01.001
Google Scholar