Grain Growth of Polycrystalline AZ31 Mg Alloy Containing Second Phase Particles by Phase Field Simulation

Article Preview

Abstract:

A phase field model has been established to simulate the grain growth of AZ31 magnesium alloy containing spherical particles with different sizes and contents under realistic spatial-temporal scales. The expression term of second phase particles are added into the local free energy density equation, and the simulated results show that the pinning effect of particles on the grain growth is increased when the contents of particles is increasing, which is consistent with the law of Zener pinning. There is a critical particle size to affect the grain growth in the microstructure. If the size of particles is higher than the critical value, the pinning effect of particles for grain growth will be increased with further decreasing the particle size; however the effect goes opposite if the particle size is lower than the critical value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-313

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: a review article, J. Alloys and Compd. 619 (2015) 639-651.

DOI: 10.1016/j.jallcom.2014.09.061

Google Scholar

[2] D. S. Svyetlichnyy, Modeling of grain refinement by cellular automata, Comput. Mater. Sci. 77 (2013) 408-416.

DOI: 10.1016/j.commatsci.2013.04.065

Google Scholar

[3] X. Song, G. Liu, N. Gu, Influence of the second-phase particle size on grain growth based on computer simulation, Mater. Sci. Eng. A 270 (1999) 178-182.

DOI: 10.1016/s0921-5093(99)00177-x

Google Scholar

[4] S. M. H. Haghighat, A. K. Taheri, Investigation of limiting grain size and microstructure homogeneity in the presence of second phase particles using the Monte Carlo method, J. Mater. Process Tech. 195 (2008) 195-203.

DOI: 10.1016/j.jmatprotec.2007.04.132

Google Scholar

[5] J. Gao, R. G. Thompson, B. R. Patterson, Computer simulation of grain growth with second phase particle pinning, Acta Mater. 45 (1997) 3656-3658.

DOI: 10.1016/s1359-6454(97)00048-7

Google Scholar

[6] N. Wang, Y. Wen, L. Q. Chen, Pinning force from multiple second-phase particles in grain growth, Comput. Mater. Sci. 93 (2014) 81- 85.

DOI: 10.1016/j.commatsci.2014.06.030

Google Scholar

[7] K. Chang, W. Feng, L. Q. Chen, Effect of second-phase particles morphology on grain growth kinetics, Acta Meter. 57 (2009) 5229-5236.

DOI: 10.1016/j.actamat.2009.07.025

Google Scholar

[8] G. Z. Zhou, Y. X. Wang, Z. Chen, Phase-field method simulation of the effect of hard particles with different shapes on two-phase grain growth, Acta Metall Sin. 48 (2012) 227-234.

DOI: 10.3724/sp.j.1037.2011.00609

Google Scholar

[9] A. Mallick, Effect of second phase mobile particles on polycrystalline grain growth: a phase-feld approch, Comput. Mater. Sci. 67 (2013) 27-34.

DOI: 10.1016/j.commatsci.2012.08.022

Google Scholar

[10] Y. P. Zong, M. T. Wang, W. Guo, Phase field simulation on recrystallization and secondary phase precipitation under strain field, Acta. Phys. Sin. 58 (2009) S161-S168.

DOI: 10.7498/aps.58.161

Google Scholar

[11] Y. Wu, B. Y. Zong, X. G. Zhang, M. T. Wang, Grain growth in multiple scales of polycrystalline AZ31 magnesium alloy by phase field simulation, Metall. Mater. Trans. A 44 (2013) 1599-1610.

DOI: 10.1007/s11661-012-1478-9

Google Scholar

[12] S. M. Allen, J. W. Cahn, A micronscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta. Metall. 27 (1979) 1085-1095.

DOI: 10.1016/0001-6160(79)90196-2

Google Scholar

[13] J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. interfacial free energy, J Chem. Phys. 28 (1958) 258-267.

DOI: 10.1063/1.1744102

Google Scholar

[14] D. Fan, L. Q. Chen, Computer simulation of grain growth using a contiuum field model, Acta Mater. 45 (1996) 611-622.

Google Scholar

[15] X. G. Zhang, Y. P. Zong, M. T. Wang, Y. Wu, A physical model to express grain boundaries in grain growth simulation by phase- field method, Acta Phys. Sin. 60 (2011) 755-763.

Google Scholar

[16] N. Moelans, B. Blanpain, P. Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles, Acta. Mater. 53 (2005) 1771-1781.

DOI: 10.1016/j.actamat.2004.12.026

Google Scholar

[17] N. Moelans, B. Blanpain, P. Wollants, Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles, Acta Mater. 54 (2006) 1175-1184.

DOI: 10.1016/j.actamat.2005.10.045

Google Scholar

[18] Y. H. Wen, B. Wang, J. P. Simmons, Y. Wang, A phase-field model for heat treatment applications in Ni-based alloys, Acta. Mater. 54 (2006) 2087-(2099).

DOI: 10.1016/j.actamat.2006.01.001

Google Scholar