Size Dependent Bond Length of Metallic Clusters by Considering Bond Number

Article Preview

Abstract:

In this study, size-dependent bond length of metallic clusters is established by introducing bond number. This model, free of any adjustable parameters, can be utilized to predict the change rule of bond length with size. If the atomic structure of a cluster is known, the size and shape-dependent bond number are obtained. The cubooctahedral structure is taken for simplicity to describe the shape and geometric characteristics of metallic clusters. It is found that the bond length decreases with the decreased size of metallic clusters, which is due to the structure relaxation and enhanced single bond energy. The theoretical predictions are consistent with the evidences of the simulations for Au and Ag clusters. This confirms the validity of taking cubooctahedron structure, even if the simulated Au and Ag clusters are not cuboctahedron ones. This can be expected to other metallic clusters even with other atomic structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-318

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Schmid, M. Baumle, M. Geerkens, I. Helm, C. Osemann and T. Sawitowski, Chem. Soc. Rev. Vol. 28 (1999) p.179.

DOI: 10.1039/a801153b

Google Scholar

[2] A.I. Frenkel, C.W. Hills and R.G. Nuzzo, J. Phys. Chem. B Vol. 105 (2001) p.12689.

Google Scholar

[3] Q. Jiang, H.X. Shi and M. Zhao, J. Chem. Phys. Vol. 111 (1999) p.2176.

Google Scholar

[4] C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang and Y.B. Zhang, J. Phys. Chem. B Vol. 106 (2002) p.10701.

Google Scholar

[5] H. Li, M. Zhao, Q. Jiang, J. Phys. Chem. C, Vol. 113, (2009) p.7594.

Google Scholar

[6] Ph. Buffat and J.P. Borel, Phys. Rev. A Vol. 13 (1976) p.2287.

Google Scholar

[7] Q. Jiang, J.C. Li and B.Q. Chi, Chem. Phys. Lett. Vol. 366 (2002) p.551.

Google Scholar

[8] K.K. Nanda, Appl. Phys. Lett. Vol. 87 (2005) p.121909.

Google Scholar

[9] W.H. Qi and M.P. Wang, Mater. Chem. Phys. Vol. 88 (2004) p.280.

Google Scholar

[10] Y.F. Zhu, J.S. Lian and Q. Jiang, J. Phys. Chem. C Vol. 113 (2009) p.16896.

Google Scholar

[11] C.Q. Sun, S. Li, C.M. Li, J. Phys. Chem. B Vol. 109 (2004) p.415.

Google Scholar

[12] H. Li, P.D. Han, X.B. Zhang and M. Li, Mater. Chem. Phys. Vol. 137 (2013) p.1007.

Google Scholar

[13] D. Liu, J.S. Lian and Q. Jiang, J. Phys. Chem. C Vol. 113 (2009) p.1168.

Google Scholar

[14] J.G. Guo, L.J. Zhou, Y.P. Zhao, Surf. Rev. Lett. Vol. 15 (2008) p.599.

Google Scholar

[15] Information on http: /www. webelement. com.

Google Scholar

[16] O.D. Häberlen, S.C. Chung, M. Stener, N. Rösch, J. Chem. Phys. Vol. 106 (1997) p.5189.

Google Scholar

[17] B. Medasani, Y.H. Park, I. Vasiliev, Phys. Rev. B Vol. 75 (2007) p.235436.

Google Scholar