[1]
Li LF, Zhang XF, Molecular Dynamics Simulation of Thermodynamic Properties for Al-Si Alloys in Material Manufacturing Engineering, Advanced Composite Materials and Manufacturing Engineering. 583(2012) 326-329.
DOI: 10.4028/www.scientific.net/amr.583.326
Google Scholar
[2]
Sun YJ, Wang QL, Geng HR, Effects of complex modificating technique on microstructure and mechanical properties of hypereutectic Al-Si alloys, J Mater Sci. 47(2012)2104-(2019).
DOI: 10.1007/s10853-011-6010-x
Google Scholar
[3]
Azimi A, Fallahdoost H, Nejadseyfi O, Microstructure, mechanical and tribological behavior of hot-pressed mechanically alloyed Al-Zn-Mg-Cu powders, Mater Des. 75(2015)1-8.
DOI: 10.1016/j.matdes.2015.03.011
Google Scholar
[4]
Ban BY, Li YL, Zuo QX, Zhang TT, Chen J, Dai SY, Refining of metallurgical grade Si by solidification of Al-Si melt under electromagnetic stirring. J Mater Process Technol, 222(2015)142-147.
DOI: 10.1016/j.jmatprotec.2015.03.012
Google Scholar
[5]
Brito C, Reinhart G, Nguyen-Thi H, Mangelinck-Noel N, Cheung N, Spinelli JE, et al, High cooling rate cells, dendrites, microstructural spacings and microhardness in a directionally solidified Al-Mg-Si alloy, J Alloy Compd. 636(2015)145-149.
DOI: 10.1016/j.jallcom.2015.02.140
Google Scholar
[6]
Harding MD, Donaldson IW, Hexemer RL, Gharghouri MA, Bishop DP, Characterization of the microstructure, mechanical properties, and shot peening response of an industrially processed Al-Zn-Mg-Cu PM alloy, J Mater Process Technol. 221(2015)31-39.
DOI: 10.1016/j.jmatprotec.2015.02.003
Google Scholar
[7]
Samuel AM, Garza-Elizondo GH, Doty HW, Samuel FH. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys. Mater Des. 2015; 80: 99-108.
DOI: 10.1016/j.matdes.2015.05.013
Google Scholar
[8]
Huang K, Li YJ, Marthinsen K. Factors affecting the strength of P{011}aOE (c) 566 >-texture after annealing of a cold-rolled Al-Mn-Fe-Si alloy, J Mater Sci. 50(2015)5091-5103.
DOI: 10.1007/s10853-015-9063-4
Google Scholar
[9]
Scheil E, Bemerkungen zur schichtkristallbildung, Zeitschrift für Metallkunde. 34(1942)70-72.
Google Scholar
[10]
Allen MP, Tildesley DJ, Computer simulation of liquids: Oxford university press; (1989).
Google Scholar
[11]
Kresse G, Hafner J, Ab initio molecular dynamics for liquid metals, Phys Rev B. 47(1993)558-561.
DOI: 10.1103/physrevb.47.558
Google Scholar
[12]
Kresse G, Furthmüller J, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp Mater Sci. 6(1996)15-50.
DOI: 10.1016/0927-0256(96)00008-0
Google Scholar
[13]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 59(1999)1758-1775.
DOI: 10.1103/physrevb.59.1758
Google Scholar
[14]
Zhang ZL, Ma JB, Dai YB, Zhang J, Wang J, Sun BD, Effects of refractory elements on the structure and dynamics of molten Ni: An ab initio molecular dynamics study, Comp Mater Sci. 77(2013)254-259.
DOI: 10.1016/j.commatsci.2013.04.005
Google Scholar
[15]
Wang SY, Wang CZ, Zheng CX, Ho KM, Structure and dynamics of liquid Al1-xSix alloys by ab initio molecular dynamics simulations, J Non-Cryst Solids. 355(2009)340-347.
DOI: 10.1016/j.jnoncrysol.2009.01.007
Google Scholar
[16]
Khoo KH, Chan TL, Kim M, Chelikowsky JR, Ab initio molecular dynamics simulations of molten Al1-xSix alloys, Phys Rev B. 84(2011)2014203-1-2014203-6.
Google Scholar
[17]
Kang JG, Zhu JY, Wei SH, Schwegler E, Kim YH, Persistent Medium-Range Order and Anomalous Liquid Properties of Al1-xCux Alloys, Phys Rev Lett. 108(2012)115901-1-115901-5.
Google Scholar
[18]
Kresse G, Hafner J, Ab initio molecular-dynamics simulation of the liquid-metal– amorphous-semiconductor transition in germanium, Physical Review B. 49(1994)14251-14269.
DOI: 10.1103/physrevb.49.14251
Google Scholar
[19]
Alemany MMG, Gallego LJ, Gonzalez DJ, Kohn-Sham ab initio molecular dynamics study of liquid Al near melting, Phys Rev B. 70(2004)134206-1-134206-6.
DOI: 10.1103/physrevb.70.134206
Google Scholar
[20]
Woodward C, Asta M, Trinkle DR, Lill J, Angioletti-Uberti S, Ab initio simulations of molten Ni alloys, J Appl Phys. 107(2010)113522-1-113522-10.
DOI: 10.1063/1.3437644
Google Scholar
[21]
Fang H, Wang W, Jablonski PD, Liu Z, Effects of reactive elements on the structure and diffusivity of liquid chromia: An ab initio molecular dynamics study, Phys Rev B. 85(2012)014207-1-014207-10.
DOI: 10.1103/physrevb.85.014207
Google Scholar
[22]
Hui X, Fang HZ, Chen GL, Shang SL, Wang Y, Qin JY, et al, Atomic structure of Zr(41. 2)Ti(13. 8)Cu(12. 5)Ni(10)Be(22. 5) bulk metallic glass alloy, Acta Mater. 57(2009)376-391.
DOI: 10.1016/j.actamat.2008.09.022
Google Scholar
[23]
Frenkel D, Smit B, Understanding molecular simulation: from algorithms to applications, Academic press; (2001).
Google Scholar
[24]
Waseda Y, The structure of liquids, amorphous solids and solid fast ion conductors, Prog Mater Sci. 26(1981)1-122.
DOI: 10.1016/0079-6425(81)90003-7
Google Scholar
[25]
Gao R, Hui X, Fang HZ, Liu XJ, Chen GL, Liu ZK, Structural characterization of Mg65Cu25Y10 metallic glass from ab initio molecular dynamics, Comp Mater Sci. 44(2008)802-806.
DOI: 10.1016/j.commatsci.2008.05.031
Google Scholar
[26]
Honeycutt JD, Andersen HC, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J Phys Chem. 91(1987)4950-4963.
DOI: 10.1021/j100303a014
Google Scholar
[27]
Cheng YQ, Sheng HW, Ma E, Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys, Phys Rev B. 78(2008)014207-1-014207-7.
DOI: 10.1103/physrevb.78.014207
Google Scholar
[28]
Wang SY, Kramer MJ, Xu M, Wu S, Hao SG, Sordelet DJ, et al, Experimental and ab initio molecular dynamics simulation studies of liquid Al60Cu40 alloy, Phys Rev B. 79(2009) 144205-1-144205-9.
Google Scholar
[29]
Ma JB, Dai YB, Zhou W, Zhang J, Wang J, Sun BD, Short range orders in molten Al: An ab initio molecular dynamics study, Comp Mater Sci. 93(2014)97-103.
DOI: 10.1016/j.commatsci.2014.06.012
Google Scholar