Correlation between the Local Melt Structure and the Dynamical Properties of Mn, Zn and Si in Liquid Al: An Ab Initio Molecular Dynamics Study

Article Preview

Abstract:

In this study, Mn, Zn and Si elements which are the most common alloying elements in Al, were chosen as solute atoms to be analyzed. The structure of molten Al, local structure around solute atoms and diffusion of the solute atoms are studied using ab initio molecular dynamics simulations. The results show that minimum addition of a solute (1 atom) does not significantly influence the structure of liquid Al as a whole. However, the local structure around foreign atoms varies dramatically for the different solute species. The local structure around Mn is the most compact and stable among the three types of solute atoms, leading to its lower diffusion coefficient. Conversely, Si possess the highest diffusion coefficient among those three kinds of elements derive from the local structure around Si is the most relaxed structure. In summary, the close packing and stable spherical shell around the solute atoms affect their diffusion behaviors in the melt. In addition, it is suggested that more alloying elements should be investigated to corroborate the results of this study.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

319-327

Citation:

Online since:

March 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li LF, Zhang XF, Molecular Dynamics Simulation of Thermodynamic Properties for Al-Si Alloys in Material Manufacturing Engineering, Advanced Composite Materials and Manufacturing Engineering. 583(2012) 326-329.

DOI: 10.4028/www.scientific.net/amr.583.326

Google Scholar

[2] Sun YJ, Wang QL, Geng HR, Effects of complex modificating technique on microstructure and mechanical properties of hypereutectic Al-Si alloys, J Mater Sci. 47(2012)2104-(2019).

DOI: 10.1007/s10853-011-6010-x

Google Scholar

[3] Azimi A, Fallahdoost H, Nejadseyfi O, Microstructure, mechanical and tribological behavior of hot-pressed mechanically alloyed Al-Zn-Mg-Cu powders, Mater Des. 75(2015)1-8.

DOI: 10.1016/j.matdes.2015.03.011

Google Scholar

[4] Ban BY, Li YL, Zuo QX, Zhang TT, Chen J, Dai SY, Refining of metallurgical grade Si by solidification of Al-Si melt under electromagnetic stirring. J Mater Process Technol, 222(2015)142-147.

DOI: 10.1016/j.jmatprotec.2015.03.012

Google Scholar

[5] Brito C, Reinhart G, Nguyen-Thi H, Mangelinck-Noel N, Cheung N, Spinelli JE, et al, High cooling rate cells, dendrites, microstructural spacings and microhardness in a directionally solidified Al-Mg-Si alloy, J Alloy Compd. 636(2015)145-149.

DOI: 10.1016/j.jallcom.2015.02.140

Google Scholar

[6] Harding MD, Donaldson IW, Hexemer RL, Gharghouri MA, Bishop DP, Characterization of the microstructure, mechanical properties, and shot peening response of an industrially processed Al-Zn-Mg-Cu PM alloy, J Mater Process Technol. 221(2015)31-39.

DOI: 10.1016/j.jmatprotec.2015.02.003

Google Scholar

[7] Samuel AM, Garza-Elizondo GH, Doty HW, Samuel FH. Role of modification and melt thermal treatment processes on the microstructure and tensile properties of Al-Si alloys. Mater Des. 2015; 80: 99-108.

DOI: 10.1016/j.matdes.2015.05.013

Google Scholar

[8] Huang K, Li YJ, Marthinsen K. Factors affecting the strength of P{011}aOE (c) 566 >-texture after annealing of a cold-rolled Al-Mn-Fe-Si alloy, J Mater Sci. 50(2015)5091-5103.

DOI: 10.1007/s10853-015-9063-4

Google Scholar

[9] Scheil E, Bemerkungen zur schichtkristallbildung, Zeitschrift für Metallkunde. 34(1942)70-72.

Google Scholar

[10] Allen MP, Tildesley DJ, Computer simulation of liquids: Oxford university press; (1989).

Google Scholar

[11] Kresse G, Hafner J, Ab initio molecular dynamics for liquid metals, Phys Rev B. 47(1993)558-561.

DOI: 10.1103/physrevb.47.558

Google Scholar

[12] Kresse G, Furthmüller J, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp Mater Sci. 6(1996)15-50.

DOI: 10.1016/0927-0256(96)00008-0

Google Scholar

[13] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 59(1999)1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[14] Zhang ZL, Ma JB, Dai YB, Zhang J, Wang J, Sun BD, Effects of refractory elements on the structure and dynamics of molten Ni: An ab initio molecular dynamics study, Comp Mater Sci. 77(2013)254-259.

DOI: 10.1016/j.commatsci.2013.04.005

Google Scholar

[15] Wang SY, Wang CZ, Zheng CX, Ho KM, Structure and dynamics of liquid Al1-xSix alloys by ab initio molecular dynamics simulations, J Non-Cryst Solids. 355(2009)340-347.

DOI: 10.1016/j.jnoncrysol.2009.01.007

Google Scholar

[16] Khoo KH, Chan TL, Kim M, Chelikowsky JR, Ab initio molecular dynamics simulations of molten Al1-xSix alloys, Phys Rev B. 84(2011)2014203-1-2014203-6.

Google Scholar

[17] Kang JG, Zhu JY, Wei SH, Schwegler E, Kim YH, Persistent Medium-Range Order and Anomalous Liquid Properties of Al1-xCux Alloys, Phys Rev Lett. 108(2012)115901-1-115901-5.

Google Scholar

[18] Kresse G, Hafner J, Ab initio molecular-dynamics simulation of the liquid-metal– amorphous-semiconductor transition in germanium, Physical Review B. 49(1994)14251-14269.

DOI: 10.1103/physrevb.49.14251

Google Scholar

[19] Alemany MMG, Gallego LJ, Gonzalez DJ, Kohn-Sham ab initio molecular dynamics study of liquid Al near melting, Phys Rev B. 70(2004)134206-1-134206-6.

DOI: 10.1103/physrevb.70.134206

Google Scholar

[20] Woodward C, Asta M, Trinkle DR, Lill J, Angioletti-Uberti S, Ab initio simulations of molten Ni alloys, J Appl Phys. 107(2010)113522-1-113522-10.

DOI: 10.1063/1.3437644

Google Scholar

[21] Fang H, Wang W, Jablonski PD, Liu Z, Effects of reactive elements on the structure and diffusivity of liquid chromia: An ab initio molecular dynamics study, Phys Rev B. 85(2012)014207-1-014207-10.

DOI: 10.1103/physrevb.85.014207

Google Scholar

[22] Hui X, Fang HZ, Chen GL, Shang SL, Wang Y, Qin JY, et al, Atomic structure of Zr(41. 2)Ti(13. 8)Cu(12. 5)Ni(10)Be(22. 5) bulk metallic glass alloy, Acta Mater. 57(2009)376-391.

DOI: 10.1016/j.actamat.2008.09.022

Google Scholar

[23] Frenkel D, Smit B, Understanding molecular simulation: from algorithms to applications, Academic press; (2001).

Google Scholar

[24] Waseda Y, The structure of liquids, amorphous solids and solid fast ion conductors, Prog Mater Sci. 26(1981)1-122.

DOI: 10.1016/0079-6425(81)90003-7

Google Scholar

[25] Gao R, Hui X, Fang HZ, Liu XJ, Chen GL, Liu ZK, Structural characterization of Mg65Cu25Y10 metallic glass from ab initio molecular dynamics, Comp Mater Sci. 44(2008)802-806.

DOI: 10.1016/j.commatsci.2008.05.031

Google Scholar

[26] Honeycutt JD, Andersen HC, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters, J Phys Chem. 91(1987)4950-4963.

DOI: 10.1021/j100303a014

Google Scholar

[27] Cheng YQ, Sheng HW, Ma E, Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys, Phys Rev B. 78(2008)014207-1-014207-7.

DOI: 10.1103/physrevb.78.014207

Google Scholar

[28] Wang SY, Kramer MJ, Xu M, Wu S, Hao SG, Sordelet DJ, et al, Experimental and ab initio molecular dynamics simulation studies of liquid Al60Cu40 alloy, Phys Rev B. 79(2009) 144205-1-144205-9.

Google Scholar

[29] Ma JB, Dai YB, Zhou W, Zhang J, Wang J, Sun BD, Short range orders in molten Al: An ab initio molecular dynamics study, Comp Mater Sci. 93(2014)97-103.

DOI: 10.1016/j.commatsci.2014.06.012

Google Scholar